Category aware and Scale aware Unsupervised Domain Adaptive Object
Detection

Jayeon Yoo!

Chaerin Kong!
Department of Intelligence and Information *

JunHoo Lee! Jooeun Kim?
Department of Data Science?

Seoul National University

{jayeon.yoo, veztylord, mrjunoco, kje980714}@snu.ac.kr

Abstract

Training object detectors typically requires large scale
dataset with heavy annotations, but their performance sig-
nificantly degrades even under relatively mild domain shifts.
As collecting new sets of labeled data for object detec-
tion can be very costly, unsupervised approach for domain
adaptation has drawn enormous attention from the com-
munity. One of the most widely used methods for unsu-
pervised domain adaptation is to align the features of the
source and target domain to have the same distribution
through adversarial training, which intends to learn gen-
eralizable features to deceive the auxiliary domain classi-
fiers. Based on the observation that object-level feature
distribution heavily depends on the object category and
its size, we propose a novel class-aware and scale-aware
conditional feature alignment framework that actively in-
corporates class and scale information into the adversar-
ial learning process. Extensive evaluations on two of the
most widely used benchmarks for domain adaptation, i.e.,
CS2Foggy and Sim10k2CS, demonstrate the effectiveness of
our method in FCOS based domain adaptive object detec-
tion.

1. Introduction

These days, deep learning has shown great performance
in various computer vision tasks. However, if the distri-
bution of test data is far from the distribution of training
data, the model performance is greatly degraded. In a real
environment, the domain of data that the model needs to
operate can be very diverse, so this performance degra-
dation problem is very critical. For example, the model
trained with the images which were taken in daytime will
perform poorly on the images taken in nighttime. To solve
this problem, the model must be retrained with a lot of data
with the changed distribution whenever the data distribution
changes. However labeling data to retrain the model is very

expensive. In particular, labeling is a very labor-intensive
process for object detection which requires the bounding
boxes and the classes of each instances in images. Unsuper-
vised Domain Adaptation (UDA) provides an efficient so-
lution to this domain-shift problem by training the model to
be domain invariant using labeled source domain data and
unlabeled target domain data.

To deal with UDA for object detection, many methods
have studied in three sections: adversarial learning, im-
age translation, and self-training. Starting with [3], most
of the studies have focused on aligning the feature distri-
bution of source and target domain globally or class-wise
using a domain discriminator based on the theoretical anal-
ysis of DANN. Several other works [2, 12] have allowed the
model to learn from the target domain with ground truth la-
bels by translating the source domain images into the target
domain style and training the model with the translated im-
ages. These methods translate images using CycleGAN and
Fourier transform, which has a limitation in that original
target domain images and the translated target-style images
still have inconsistency. Recently, self-training based meth-
ods have been proposed. In [ 7], the model which is trained
on the source domain generates pseudo labels for the unla-
beled target domain and retrain the model with the pseudo
labeled target domain data. Other works [14] suggested a
method in which a student model is trained to follow pre-
dictions from a more consistent teacher network using the
Mean Teacher framework widely used for semi-supervised
learning.

Fig. 2 shows the TSNE of backbone features located at
the center of objects among the backbone features of FCOS.
In Fig. 2a, each color refers to difference classes. In the case
of Cityscapes dataset, there are total 8 classes. Although
the distribution is not very clear, it can be seen that features
corresponding to classes such as person, car, rider, and bicy-
cle show different distributions. Fig. 2b shows the feature
distribution in another perspective, the scale of bounding
boxes. The color means the scale of bounding boxes: the
darker the color, the larger the scale of bounding boxes, and
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Figure 1: These visual differences between domains, i.e.,
domain gaps, severely harm the performance of conven-
tional object detectors.

vice versa. It shows that the backbone features have the dis-
tribution according to the size of the corresponding objects.
The tendency is more pronounced when visualizing a sin-
gle category, such as the class car in Fig. 2c. Although the
features are from the same category (e.g. car), they have
difference distributions according to the size of the objects.
The feature of larger object are closer to the larger one than
the features of smaller objects. For object detection which
requires not only classification but also bounding box re-
gression, especially for FCOS which predicts the values of
left, top, right, bottom of bounding boxes, the features are
gathered between same classes and are distributed along the
size of the objects. Paying attention to this analysis, we will
not only align features of source and target domain with the
same class, but also align features conditionally according
to the size of the object.

Hence, in this paper, we propose a novel framework
for feature alignment with object category-aware and scale-
aware conditioning, which can be directly incorporated
upon aforementioned FCOS detector. To this end, we train
a convolutional domain classifier along with our detector,
to which the outer product of the feature vector and our
model’s prediction is provided as the feature map. This,
in essence, is equivalent to intentionally forming a larger
dimensional discriminator embedding space roughly parti-
tioned by the class and scale conditions, where the model
prediction vector is expected to assign the corresponding
feature to the appropriate ghetto. Since it is not straight-
forward to train a conditional discriminator with continu-
ous conditions such as object scale, we opt for the simplest
choice of binning the scale values and using the resultant
one-hot vectors instead. With this formulation, we can ef-
ficiently model conditional input with a single strong dis-
criminator, opening up the doors for class- and scale-aware
feature alignment in a very simple yet effective manner. Our
contributions can be summarized as:

* We demonstrate the distributional discrepancy of
FCOS features with differing object scales.

¢ We introduce a novel framework for adversarial fea-
ture alignment that conditions on object category and
scale in a highly efficient manner.

* We show the effectiveness of our proposed method
through empirical evaluations on two widely used
domain adaptation benchmarks, CS2Foggy and
Sim10k2CS.

2. Related Works
2.1. Domain Adaptive Object Detection

Numerous methods regarding object detection and do-
main adaptation were developed, but it was only until re-
cently that domain adaptive object detection models with
various approach arose.

Adversarial Learning Chen et al. [3] first proposed do-
main adaptive object detector by extending the idea of do-
main adaptation to existing object detection models. Based
on Faster R-CNN [24], they used two domain adaptation
components for global image-level and local instance-level
each. Adversarial learning was adopted in order to train
the domain classifiers while minimizing the domain dis-
tance. This work was elaborated [25] by giving more focus
on local instance-level alignment and applying weak global
alignment.

Image Translation Pixel-level domain adaptation us-
ing image translation used intermediate domain in Cycle-
GAN [33] for domain adaptation. Hsu et al. [1 1] attempt to
bridge the gap between source and target domains with an
intermediate domains. With this approach, domain adap-
tation is decomposed into two subtasks, which is to first
align the source domain to the intermediate domain, and
then the intermediate domain progressively learns the tar-
get domain. Chen et al. [2] aims to focus more on feature
representations of object detectors. To enhance the exist-
ing adversarial-based methods, the potential contradiction
between transferability and discriminability were hierarchi-
cally harmonized.

Conditional Align Motivated by conditional generative
adversarial networks [21], conditional domain adversarial
networks [ 1 9] were proposed to condition discriminative in-
formation conveyed in the classifier predictions in adversar-
ial adaptation models. CDANSs adopted multilinear condi-
tioning to capture domain-specific feature representations
and predictions. Further, domain discriminators are condi-
tioned on the uncertainty of classifier predictions, prioritiz-
ing the discriminator on easy-to-transfer examples. Recent
works in conditional unsupervised domain adaptation are
based on the ideas proposed in [19] and tend to focus on
class-wise alignment. Inspired from [19], Zhao et al.[32]
utilizes the multi-label prediction probability to perform
conditional global feature alignment. Li et al.[18] elabo-
rates on the idea of conditional alignment as a collabora-
tive class conditional generative adversarial net to bypass
the dependence on the source data. With the concept of col-
laboration between the generator and the prediction model



(a) Distribution of features according to (b) Distribution of features according to (c) Distribution of features correspond-

the classes. box heights.

ing to car according to box heights.

Figure 2: TSNE of backbone features of the source domain. The color means (a) the classes (b, c) the scale of the height of
GT bounding boxes, which means that the darker the color, the larger the height value.

without the source data, [18] applies weight constraint to
encourage similarity to the source model for indirect super-
vision. The idea of class conditional domain adaptation that
attempted to remove pseudo-label bias from the existing
models was proposed by Jiang et al.[13], who presented a
sampling-based implicit alignment approach, where sample
selection is implicitly guided by the pseudo-labels. MeGA-
CDA [30] was also proposed to address negative transfer
of features during class-agnostic domain alignment. This
method trains category-wise discriminators and generates
memory-guided category-specific attention map for target
features in which class information is not available.

2.2. Improving Robustness

Despite its broad terminological practice, approaches de-
signed to improve robustness typically aim for smooth func-
tion approximations. [31, I, 29] leverage mixup based data
augmentation to encourage linear behaviors in-between ob-
served train examples. Modifications on the objective func-
tion have also been made. [20] formulates optimization
scheme more robust to diverse adversarial attacks, while
[5] proposes to seek local minima with flat neighborhood
landscape. Empirical studies show that pretraining [8], self-
supervised learning [9] and training models with shape bias
[6] improve model robustness. On distribution shift, adver-
sarial training has also been shown beneficial for transfer
performance [28].

Robustness is an important property for object detection
models as well. [16] learns object detector more robust to
distribution shift by using noisy labels. [12] demonstrates
the effect of adversarial training for robust domain adapta-
tion. Recently, [23] proposes domain-centric data augmen-
tation and effective knowledge distillation that show im-
pressive results on diverse benchmarks.

3. Method

We propose a method of category-aware and object
scale-aware adversarial feature aligning for FCOS object
detector. Section 3.1 briefly describes FCOS [27], one-stage
detector we use, to explain our concept more clearly. Sec-
tion 3.2 describes conditional adversarial aligning method
which is a simple and effective for category-aware feature
aligning by exploiting the backbone features and category
predictions simultaneously. Section 3.3 applies conditional
adversarial alignment to the object scale to align backbone
features according to the object scale. Finally, Section 3.4
summarizes the overall objectives.

3.1. Preliminary: FCOS

FCOS is a one-stage detector that predicts object cat-
egories and bounding boxes directly from feature maps
without a region proposal network. FCOS configures fea-
ture pyramids of five levels using backbone features and
is trained to predict object categories, centerness, and left,
top, right, and bottom distances to the closest bounding box
from each location in the feature map as shown in Fig. 4. In
the inference stage, the more accurately the features located
at the center of the object predict the result, so the object
is detected based on the prediction of the feature with high
classification confidence and centerness.

We observe that the backbone features are distributed ac-
cording to not only object categories but also object sizes
especially for FCOS because it predicts the left, top, right,
and bottom distance to the bounding boxes from the current
location. It is different from that Faster-RCNN, a represen-
tative two-stage detector, regress four values to correct the
proposal which is generated from a Region Proposal Net-
work. Focusing on this point, we align the features of the
source and the target domains in category-aware and scale-
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Figure 3: Overview of our model

aware based on the prediction of classification and regres-
sion.

Figure 4: FCOS predicts object categories, centerness, and
left, top, right, and bottom distances to the bounding box
from each location in the feature map.

3.2. Category-aware feature alignment

In order for the object detector trained in the source
domain to adapt well in the target domain and perform
object classification and bounding box regression well,
features corresponding to foreground objects in the source
domain image must have a distribution similar to that of
the target domain. Therefore, in order to focus on aligning
features corresponding to object other than background
in the feature maps, we generate a mask M,,; by mul-

tiplying classification confidence and centerness score
P.cnternessas in Eq. 1. We use the maximum probability
value among classes at each location to obtain classification
confidence. The higher the class confidence and centerness
score, the higher the probability of being a foreground
object, so by applying the mask to the feature maps, we can
obtain foreground object features.

MObj = mCaX(PClS) © Peenterness )]

Unlike EPM [10], which entirely aligns features corre-
sponding to foreground objects, we align those features to
have the same distribution by category through the con-
ditional adversarial alignment method. Let F,.", = €
R4 be the feature vector located at (u,v)-th position in
the backbone feature maps and P € R¢ is a classifica-
tion probability vector of FCOS head at the same location
(u,v) when N¢ is the number of categories. By flattening
the matrix, which is the result of the outer product of the
original feature vector Fyo¥,,  and the class probability
vector P'", we can obtain a new feature vector F.;Y . €
RdmsxNe conditioned on classification prediction. This
new feature map Fijs-cong Would be fed into the discrim-
inator with mask M,,;. Conditioning through outer prod-
uct has the effect of increasing the dimension while allow-
ing the feature to have different subspaces according to the
class probability. For example, suppose an object detection

problem that classifies objects into three categories. Sup-



pose that the backbone feature vector f; € R? located at
the (u1, v1)-th position is masked in with high classification
confidence and high centerness, and the corresponding clas-
sification probability P; is (0, 0.99, 0.01). The dimension
of the conditioned feature f.;s-cong 1 flattened the matrix
made of the outer product would be three times the original
feature dimension. Since the probability of the second class
is the highest, the second part (i.e. (d+1,d+2, ..., 2d)-thel-
ement) of that conditioned feature fjs-conqg 1 Would be sim-
ilar to the original feature vector f, but the other elements
would be almost zero. As such, features with the highest
probability of the second class have feature values in the
second part of the conditioned feature, which is increased in
dimension, and are trained to have a similar distribution of
sources and targets in this subspace. On the other hand, fea-
tures with the greatest probability of the first or third class
have a feature value in the first ((1,2, ..., d)-th element) or
third part ((2d + 1, 2d + 2, ..., 3d)-th element) when the di-
mension increases, resulting in a feature distribution on dif-
ferent subspaces. However, in the early stages of learning,
even if the classification probability has high confidence, it
may not be accurate, so we use an equal probability value
%c for all classes for conditioning, and then gradually use
the prediction value P, as iteration increases as Eq. 2. In
all experiments, we set Iter to 6000 which is half of the first
learning rate decay point and q to 0, initially starting with
even conditioning for all classes and increase the usage rate
of predictions linearly, allowing only prediction value to be
used after 6000 iteration.

it
a=maz(l — m,q)
Iter @)
U, U, 1
Fcl.,s-cond - Fbackbone ® ((1 )Pcls Nic]l)

The discriminator D.;s and backbone is trained as shown in
Eq. 3. The commonly used gradient reverse layer is applied
to train backbone to embed features so that features cannot
be distinguished from which domain they come from. As
a result, we can align the feature distribution of source and
target domain in a category-aware manner by using the high
confident classification prediction.

Z leg cls

( - d) IOg(]. - DCZS((Fg;s-cond © Mg;;j)U7U))

cls IS7IT cls cond © Mobj)u ))+

3)

3.3. Scale-aware feature alignment

We will use the prediction value of bounding box re-
gression for conditioning similar to Sec.3.2 to align the fea-
ture according to the object scale. However, in the case of
bounding box regression, unlike classification, there is a big
difference in predicting it as a continuous value. We simply

bin the continuous regression value into three classes and
change it to a categorical prediction to conduct condition-
ing.
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Figure 5: The distribution of the width of the ground truth
bounding boxes of all objects in Cityscape and Sim10k
dataset. It is divided into three categories (the width is less
than 32; more than 32 and less than 64; more than 64) and
binning is performed.

Based on the distribution of the width value of the gt
binding box of all objects in the dataset (Fig.5), we deter-
mine the binning threshold heruristically so that the object
does not tilt too much to a specific bin. FCOS head pre-
dicts four values of (I, ¢, 7,b) at each location of the feature
map and we use only [ (left) and ¢ (top) value among these
regression values. This is because [ (left) and r (right), ¢
(top) and b (bottom) have similar tendencies since we focus
on features with high centerness by multiplying mask M ;
like Sec.3.2. By binning the regression value [ as shown in
Eq.4, we can obtain one-hot vectors of three categories for
left regression value. We apply the same binning method to
top regression value ?.

(1,0,0) ifl*? < 16

PT"e’g_left =4(0,1,0) if16 <" < 32 (€]
(0,0,1) if32<™?

Since the continuous regression value is changed to a

one-hot category value, we can apply the feature condition-
ing in Sec.3.2 equally as in Eq.5.

Fﬁi;} cond — Fl:fzgkbone ® ((1 - Oé)P,f‘e;’ + Otg]l)
;C'reg IS7IT Zleg reg 'reg cond ® M(;S;)j)u,v))+

( - d) log(l - DT@Q((Freg cond © Mg;])um))
®)
Like Sec.3.2, as the alpha value o gradually decreases
from 1 to O, and at the beginning when the prediction is
inaccurate, all object scales are conditioned equally, and as



learning progresses, each scale is hard-conditioned. As a
result, we can align the features of the source and target
domain in object scale-aware manner.

3.4. Overall objective

Using labeled source domain data, FCOS backbone and
FCOS head are trained for object detection tasks consisting
of object classification and bounding box regression. The
object detection loss is represented as L.

Edet (IS) = Edet-cls + Edet-reg (6)
Following EPM [10] which is the first domain adaptive ob-
ject detection method based on FCOS, we also align fea-
ture distribution globally. It is the same as the most basic
structure of the adversarial aligning method by feeding the
entire backbone feature into the discriminator to distinguish
whether it is from a source domain or a target domain. We
can narrow the overall domain gap in the image-level fea-
ture distribution between the source domain and the target
domain by global aligning, Lgiopai-

»Cglobal (IS'7 IT) - Z leg(DQIObal (FI:L(;:kI)onp))
u,v (7)

-I—(l — d) log(l — Dglobal(Fu’v ))

backbone
Finally, the total loss is the addition of detection loss L.,
global aligning loss Lgiobal, category-aware aligning loss
L1 and sclae-aware aligning loss L,..4 as in Eq. 8.

£total = Kdet(IS) + )\globalﬁglobal (IS, IT)

3)
+)\cond(£cls(IS7 IT) + ﬁreg(-[Sv IT))

4. Experimental Results
4.1. Implementation Details

We conduct experiments based on FCOS using VGG16
as the backbone. We use an Image-Net pretrained model
and reduce the overall domain gap using only object detec-
tion loss and global alignment at the beginning of training
following EPM [10]. Then, we train the model for 20000
iteration with weight decay le-4, initial learning rate 0.02
for Cityscape to Foggy Cityscape and 0.01 for Sim10k to
Cityscape, respectively. We decay the learning rate at 12000
and 18000 iteration by the rate of one-tenth. During train-
ing, Agiobar and Acong are fixed to 0.01 and 0.1, respectively.
We set the weight for the Gradient Reversal Layer (GRL) to
0.02 for global aligning and 0.2 for our conditional align-
ing. Also, in order to reduce the effects of incorrect predic-
tions with high confidence in the early stages of learning,
we set Iter to 6000 which is half of the first learning rate
decay point and g to 0. Therefore, after 6000 iterations,
only the predicted probability is used for conditioning fea-
tures. For Cityscapes to Foggy Cityscapes benchmark set,
both category-aware and scale-aware feature alignment are

applied, but for Sim10k to Cityscapes, only scale-aware fea-
ture alignment is applied because there is only one category,
car, in that benchmark set. Input image is resized to 800 for
short side, and 1333 to long side.

4.2. Datasets

We conduct experiments for two scenarios as described
in Sec. 4.1. One is the adverse weather driving adaptation
scenario and the other is learning from synthetic data
scenario.

Driving in Adverse Weather Cityscapes [4] consists
of clear city domain images under driving scenarios,
summing to 2975 and 500 images for training and vali-
dation, respectively. There are 8 categories, i.e., person,
rider, car, truck, bus, train, motorcycle and bicycle. And
Foggy Cityscapes [26] are made of synthetic dataset which
transferred original Cityscapes images into foggy domain.
We used Cityscapes data as the source domain, and Foggy
Cityscapes as the target to simulate domain shift caused by
the weather condition.

Learning from synthetic data Sim10k [15] consists of
10,000 synthesized city-domain images with their corre-
sponding bounding box annotations. In this experiment, we
set Sim10k as the source domain and Cityscapes as the tar-
get domain. So this adaptation tests the model whether it
can adapt well from synthesized domain to real world do-
main. Only the class car is considered.

4.3. Overall Performance

We denote category-aware feature aligning as Cat-
egory, and scale-aware feature aligning as Bbox-width
and Bbox-height for conditioning on [ (left) and ¢ (top)
value, respectively. The backbone architecture is VGG-16.
Source Only refers to the case where the model is trained
only on the source domain data without domain adaptation.
Oracle refers to the model which learned from target
label in supervised setting, juxtaposed to demonstrate our
adaptation ability in a relative manner.

Driving in Adverse Weather We conduct experiments
with category-aware and scale-aware feature aligning, as
well as with a method of applying both of them. All of our
methods outperforms other methods significantly regardless
the type detector as shown in table 1. The number of EPM
is taken from the original paper, which set the initial learn-
ing rate to 0.005 and train without learning decay. EPM*
is the results of [10] with the same initial learning rate of
0.02 and scheduling as ours to make a fair comparison.
The results show that each single module, category-aware
alignment and scale-aware alignment alone, are effective
enough to increase mAPf ; by 2.8 and 2.7, respectively,



Table 1: Results of Cityscape to Foggy Cityscape. * denotes the results of our re-implementation.

Method Detector person rider car truck bus train mbike bicycle mAP 4
Source Only 17.8 236 27.1 119 238 0.l 14.4 22.8 18.8
DAF [3] 250 31.0 405 221 353 202 200 27.1 27.6
SC-DA [34] 335 38.0 485 265 390 233 280 33.6 33.8
MAF [7] Faster-RCNN 282 395 439 238 399 333 292 339 34.0
SW-DA[25] 299 423 435 245 362 326 300 353 34.3
DAM [17] 30.8 405 443 272 384 345 284 322 34.6
MeGA-CDA [30] 377 49.0 524 254 492 469 345 39.0 41.8
Oracle 372 482 527 352 522 485 353 38.8 43.5
Source Only 302 274 342 68 180 27 144 293 204
EPM [10] 419 387 567 226 415 268 246 355 36.0
EPM* [10] 449 444 60.6 265 455 289 306 37.5 399
Synergy [22] FCOS 45.1 474 594 245 500 257 260 38.7 39.6
Ours (Category) 472 447 619 27.6 489 386 317 38.6 424
Ours (Bbox-width) 46.7 453 626 259 477 396 323 38.5 423
Ours (Category & Bbox-width) 464 458 620 267 485 453 349 379 434
Oracle 49.6 475 672 313 522 421 329 41.7 45.6

Table 2: Results of Sim10k to Cityscapes. * denotes the re-
sults of our re-implementation. No class conditional align-
ments are used since only car classes are used.

Method Detector mAP -
Source only 343
DAF [34] 39.0
MAF [7] 41.1
MeGA-CDA [30] Faster-RCNN  44.8
SW-DA [25] 42.3
SC-DA [34] 43.0
Oracle 69.7
Source Only 40.4
EPM [10] 49.0
EPM* [10] 50.0
Synergy[22] FCOS 51.8
Ours (Bbox-width) 53.7
Ours (Bbox-height) 53.9
Oracle 72.7

compared to basleine EPM*. In addition, since the object
category and object scale are complementary conditions,
it can be seen that when the two conditioning are applied
simultaneously, mAP[, ; increases by 3.8 and is only 1.8
less than oracle performance. Considering that oracle with
FCOS is slightly better than oracle with Faster-RCNN, ours
shows better performance than other Faster-RCNN based
methods.

Learning from synthesis data Table 2 shows the re-
sults on Sim10k to Cityscape benchmark set. Since dataset
has only one category, Model considered Bbox-scale only.
We conduct experiments on conditioning width and height

of bounding boxes. Both binning methods result signifi-
cant improvements compared to the baseline [10]. We ob-
tained the best results among models. Improvement of per-
formance was similar whether it is binned with Height or
Width. But binning with width recorded slightly better than
the other.

4.4. Ablation Study

Our discriminator takes the outer product of model pre-
diction and the corresponding feature as the input feature
map, which results in both higher dimensional input and
discriminator feature space. We hypothesize that this alone
could improve the overall performance, hence conduct ab-
lation studies on the precise impact of conditioning on the
model prediction as shown in Tab. 4. In Tab. 4, when ¢ = 1,
« is always 1 during training, and as a result, the features
are conditioned on only uniform constant vector, i.e., %]1
where N refers to the number of classes/bins and 1 repre-
sents a length-N vector with all elements equal to 1. It is
the same as simply increasing the dimension of the exist-
ing features without conditioning on either category-aware
or object scale-aware. We observe overall boosts in perfor-
mance due to larger input and model size, but further gains
can consistently be obtained when model prediction is used,
as it effectively guides the input feature vectors to the ap-
propriate regions in the enlarged discriminator latent space.
Thus, we empirically confirm that our proposed method uti-
lizes conditional information in a highly efficient manner,
outperforming simple baselines with equivalent capacity.

5. Conclusion

We present a novel unsupervised domain adaptation
framework with object category-aware and scale-aware fea-
ture alignment that builds upon the single stage object de-



Table 3: Results of Sim10k to Cityscapes. * denotes the results of our re-implementation. No class conditional alignments

are used since only car classes are used.

Dataset Method

mAP mAPj; mAPj,; mAPS mAP), mAP]

Source only
Ours (Category)
Cityscapes — Foggy Cityscapes Ours (Bbox-width)
Ours (Category & Bbox-width)
Oracle

10.8 20.4 10.0 1.2 11.3 28.4
23.5 42.4 21.6 3.7 222 43.5
24.0 423 23.0 39 21.9 43.9

24.0 434 23.0 4.0 21.7 44.5
25.4 45.6 23.4 5.5 24.2 44.8

Source only

Sim10k — Cityscapes Ours (Bbox-width)

Oracle

Ours (Bbox-width & Bbox-height)

12.8 40.4 29 43 13.1 27.0
31.4 53.7 31.3 8.7 29.0 60.9
29.9 53.0 28.7 8.1 32.0 59.2
48.7 72.7 51.3 18.9 55.5 81.4

Table 4: Comparison of mAPy, ; according to the change in

q value, which is in « = max (1 — %7 q) of Eq.2
Dataset Conditioning ¢=1 ¢ = 0 (ours)
Cityscapes — Foggy Cityscapes B(ti(?;e—%voirdyth j}i 1;;‘
e Bt 20 08

tector, FCOS. In our framework, we utilize a strong do-
main classifier trained on the outer product of the feature
vector and class/scale prediction vectors for adversarial fea-
ture alignment. We empirically show the effectiveness of
our proposed method through thorough evaluations on two
widely used domain adaptation benchmarks, CS2Foggy and
Sim10k2CS. We hope our work fertilizes active research in
the field of unsupervised domain adaptation.
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