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Abstract

Human pose estimation (HPE) aims to
understand human posture by localizing body
keypoints from images or video sequences. As a basic
task in computer vision, HPE is a core component for
many practical applications in various fields.
However, HPE is still a very challenging task.
Acquiring a dataset for application to a new domain
is an especially big challenge because data collection
and annotation are costly, and for many tasks, only a
limited amount of data may be available. There are
several approaches to solving this problem such as
data augmentation, unsupervised or self-supervised
learning, and refinement of pose estimation but these
methods may cause too much computation or long
model-inference latency. Meta-learning, also known
as “learning to learn”, enables deep learning to
achieve higher performance without large datasets
and sufficient computational resources by making
them learn how to learn. In this team project, we first
present a novel meta-learning approach that can
easily generalize the human pose estimation task to
multiple domains with small dataset and low
computing cost. Experimental evaluations were
performed on whether the proposed approach can
quickly learn a new task and can be applied to
multiple domains.

1. Introduction

Human pose estimation (HPE) is one of the most
important computer vision tasks that includes
detecting, associating, and tracking semantic key-
points such as elbows and knees. It aims to
understand human posture by localizing body joints

from images or video sequences. As a fundamental
task in computer vision, HPE is a key component for
many practical applications such as human-computer
interaction, movies and animation, virtual reality,
medical assistance for rehabilitation training and
physical therapy, human motion prediction for self-
driving, sports motion analysis to automatically track
or estimate human movement accuracy. It can also be
applied in video surveillance and detecting illegal or
inappropriate human behavior.

As well as other vision tasks, HPE also achieves
excellent and remarkable progress through the
introduction of deep learning. The use of deep
convolutional neural networks (DCNNSs), advanced
computing power, and most importantly, the
availability of large amounts of annotated datasets
have contributed to improvement in terms of
performance [1, 2, 3]. However, HPE is still a very
challenging task because body appearances of human
change dynamically by change in clothes, occlusions,
and background contexts. A good pose estimation has
to be robust to these variations. Acquiring a dataset
for application to a new domain is also a big challenge.
Data collection and annotation are time-consuming,
difficult, and for many tasks, only a limited amount
of data may be available.

HPE enables or acts as a core building block for
many vision-based edge Al applications. Thanks to
recent researches to enable real-time pose estimation
in edge devices [4, 5], it can be applied to more
diverse fields. However, in order to flexibly expand
the domain of application and to use such techniques
in practice, sufficiently large and unbiased datasets
are required. This can be especially difficult for
extreme motions such as poses in specific sports,



which are difficult to infer from typically provided
pose examples. In case of video surveillance
applications, we need a new dataset for them due to
the different angle view, scale and resolution.

There are several approaches to solving the
costly data acquisition problem. A typical approach is
data augmentation method that is scalable for
synthesizing large amount of data [6, 7, 8, 9]. Some
researchers address this challenge by proposing
unsupervised or self-supervised approach that does
not require annotations and be trained from unlabeled
data which can be collected relatively easily [10, 11,
12]. Refining the pose estimation result [13] can also
be a solution to reduce performance degradation that
may occur when HPE is applied to a new domain with
insufficient data. However, these methods may cause
too much computation or long model-inference
latency.

To solve this problem, we first applied meta-
learning, which learns how to learn quickly, to pose
estimation. Our overall contribution is
* By applying a meta-learning algorithm to pose
estimation, we show that meta-trained model can
adapt well to explicitly different domains.

* We designed dataset applicable for meta-training:
various tasks were effectively constructed by
appropriate augmentation

* For the evaluation of the performance in domain
generalization, we proposed novel labeled dataset of
multi-person 2D pose estimation on the domain of
thermal image and unique posture.

2. Related Works

2D Multi-person Pose Estimation: Prior to our
research on HPE, early successful algorithms for
human pose estimation introduced inference
mechanisms on part-based graphical models [14].
Advanced from this work, a variety of methods have
been developed with inference algorithms for
detecting body parts in supposed environments such
as single person pose estimation or multi-person pose
estimation [15, 16, 17]. In recent researches on
human pose estimation, 2D multi-person pose
estimation algorithms can be divided into

classification standards: model-based vs. learning-
based. Learning-based human pose estimation uses
certain approaches on mapping which learns from
given image and joint coordinates with explicit
models that infer the relations between body parts in
the image with annotated keypoints samples.

Although certain approaches in human pose
estimation using deep learning may require a great
deal of training data and computation time, these
methods outperform model-based approaches. With
another criteria, in multi-person human pose
estimation, it can be classified into top-down methods
and bottom-up methods.

Top-down methods first detect human instances
and estimate the pose of the instances. Examples of
top-down method include G-RMI [18], CFN [19],
Mask R-CNN [20], and CPN [21]. They all locates
joints within bounding boxes previously generated by
instance detector such as Fast-RCNN [22], Faster-
RCNN [23] or R-FCN [24]. On the contrary, in
bottom-up methods, certain model locates all joints
of human present in the input images at one time and
graphs the estimated results over the given images.
Although the computational cost of top-down models
increases proportionally with the number of detected
human instances, they are scalable detecting
diversified poses of human instances.

In contrast to top-down approaches, bottom-up
approaches detect all the possible keypoints at first,
and then assemble these joints into the complete
poses for assigned person based on various joint
assembly techniques which don't require human
bounding box detection

Meta Learning: Meta-learning, also known as
“learning to learn”, enables deep learning to achieve
higher performance without large datasets and
sufficient computational resources by making them
learn how to learn. There are several common
approaches in meta learning such as metric based
approach and optimization-based approach.

Optimization-based approach is to optimize the
model parameter for fast learning. Model-Agnostic
Meta-Learning (MAML) [25] is a highly investigated
meta-learning algorithm for few-shot learning using



Algorithm 1: Meta-training for k-shot HPE

Require: Learner: HPE model H(X; 8) with input X parameters 6;
Require: X: dataset over pose estimation tasks from D
Require: a: learning rate hyper-parameters for inner optimization

Require: : hyper-parameters for parameter update

Randomly initialize 8
while not done do
Sample batch of tasks i ~ D
for a/li do
Oo1a =0
for inner step do
0=0-— aVGL(H(Xtrain,i; 9): Ytrain,i)
end for
enew =0
0=06+ ﬂ(enew - gold)
11 end for
12 end while
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optimization-based approach, achieving
competitive performance on several benchmark few-
shot learning problems [26, 27]. Reptile [28] which is
basis of our meta-learning algorithm is a novel first-
order optimization-based meta learning algorithm
which avoids computational burden of MAML.

3. Method

3.1 Meta-Learning Setup for Human Pose
Estimation

We want to train a learning procedure (i.e., the
meta-learner) that enables the HPE model (i.e.,
learner) to adapt quickly to various domain images.
For the k-shot pose estimation task, each task aims to
estimate a human pose from a few (k) examples. It
consists of a loss function L, a sampled small training
Set Dirgin = {Xtrain, Yerain)} CONtaining k images.
In training, we divided the data into 32 size batches
after shuffling and considered one batch as one task.

3.2 Learner: Human Pose Estimation (HPE)
Model

We use simple and effective model [29] which
takes Top-down approach for human pose estimation
as our baseline learner. When the pretrained model
deploys a convolutional neural network which
learned to detect person in image (e.g. person
detector), the model predictes the pose of each person

in detected region (Figure 1). It uses Faster- RCNN
for the person detector, and this detection part is not
involved in meta-learning process. Following the
common practice in top-down approaches, the
location of each keypoints is estimated on the
averaged heatmaps of the original and augmented
image. And then a quarter offset in the direction from
highest response to the second highest response is
used to obtain the final location of human body joints.
The model uses resnet50 as backbone, and adds few
deconvolutional layers over the last feature map to
use up-sampling to increase the feature map
resolution.
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Figure 1. The proposed framework of our baseline
model (learner) for human pose estimation

3.3 Meta-learner for HPE

For enabling HPE model to adapt quickly even
with a few-shot learning, setting an initial model
parameter 6 is an important key. We learn initial
HPE model parameter 6 by using meta learning
algorithm. Our meta learning algorithm is compatible
with any model trained with gradient-based learning



rules (e.g., SGD) and aims to learn a model in a way
that a few SGD step for a new task can make a rapid
adaptation.

We select a set of images for training samples
from human pose image in various action. After
shuffle, each training samples are considered as a task
for the meta-learner H to learn. The learner H is
defined as H(X; ), where X is input image and 0 is
the HPE model parameter. In each task i, the initial 8
is subject to SGD update for the train set from
specific task i. This procedure is called inner
optimization:

9{ =0- aVOL(H(Xtrain,i; H)rYtrain,i) (1)
where L is the loss function and (X¢rainis Yerain,i) is
input image — keypoints label pair in the training set
from task i.

After the inner optimization for the i th task, we have
a new model learned appropriately for the i th task,
called 6;. Our meta learning algorithm updates the
parameters of the model using the difference between
6; and 6.
Since 6, is learned more biasedly to a specific task i
than 6, 6; — 6 term is added to 6 for all i so that B
learns evenly to all tasks. This can be formulated as:
0=06+ B(O; —6)foralli 2
Since each batch is defined as a task, inner
optimization and parameter updates are performed
for all batches.
When meta-training is over, meta-testing is
performed with a few-shot dataset which is in the new
domain.

4. Experiments
4.1 Datasets

COCO Dataset: COCO dataset [30] is a
comprehensive dataset for object detection, instance
segmentation and keypoints detection. COCO 2017
Keypoints dataset is one of the stae-of-the-art
benchmarks for evaluation of human pose estimation.
It includes more than 200K images containing over

250K person instance labeled with 17 body keypoints.

The COCO keypoints evaluation metric defines the
object keypoint similarity (OKS) which plays the

same role as the loU in object detection and uses
mean average precision (mAP) over OKS [31]

Collected Dataset for Few-shot Learning: The
main goal of the proposed method is to generalize the
human pose estimation task to various domains with
small dataset. Thus, dataset preparation from
different domains is as important as the model design.
We collected datasets from two different domains in
which HPE can be effectively utilized.

First, we gathered images of unique postures
such as yoga or dance choreography (UniquePose
Dataset). The joints used for postures in these areas
are different from common human postures in daily
life. Since taking correct posture using appropriate
joint or muscle is significant in sports, it will be
highly useful if HPE is available. Second dataset
includes the images of different luminous intensity
such as thermal camera images (Thermal Dataset).
Applying HPE to these images can be helpfully used
in fire sites or for security detection.

Figure 2. Examples of data augmentation for meta
training

4.2 Meta Training

We trained the learner in a general gradient
descent-based algorithm using COCO 2017
Keypoints dataset as HPE baseline model for
comparison with our model. On COCO 2017
Keypoints valid dataset, the HPE baseline model
achieves 74.3 of mAP with ground truth bounding
boxes.

As our model, we implemented HPE baseline
model with meta learning algorithm and trained the



model with COCO 2017 dataset to test domain
adaptation performance. To be more robust to noise
or domain deviation, we supplemented the dataset in
three augmentation methods (Figure 2). Considering
that the position of the keypoints can be changed to a
very free form in a human posture, augmentation was
performed with three transforms using affine
transformation, elastic transformation, perspective
transformation.

Prior to entering the model, the augmented and
shuffled datasets are divided into 32 fixed batch sizes,
and each batch functions as a task. When the inner
optimization for each task is completed, the
parameters are updated, and finally, we get a model
that becomes a good initial value for any task. Since
the parameters of the current task are updated in a
way that adds the parameter difference between the
previous task and the current task, the weight, called
meta step size, multiplied by the difference between
the two parameters is also an important
hyperparameter. We set the meta step size to 0.05.
Since our dataset, including three augmentations, was
480,000, the number of our tasks, that is, the number
of batches, is about 15000. Therefore, our model has
been optimized over 15,000 inner optimizations.

4.3 Evaluation: Few-Shot Learning for Domain
Adaptation

First, we test whether the HPE baseline model
outputs the accurate pose estimation results when
images from explicitly different domains are used as
input data. The test is conducted with several images
from two datasets we collected. Figure 3 shows the
results of key points detection and pose estimation.
We found that HPE baseline model lacks the
generality across domains, although working
accurately for dataset similar with the one used for
training.

The goal of our experimental evaluation is to
answer the following question: Can meta-trained
learner model enable fast learning of new domain
task? We evaluate performance by meta-test (fine-
tuning) the HPE baseline model and our model on K
= {16 for UniquePose dataset, 32 for Thermal dataset}

datapoints.

Figure 3. The results of key points detection and pose
estimation.

We present the results in Table 1. After training
20 epochs on each dataset, we tested 25 datapoints for
evaluation. Our model shows slightly higher AP and
average recall (AR). Figure 3 (b) is the result of a
well-corrected error by meta-tested our model.

Dataset Model | AP | APy | AP | AR | ARg | ARy
HPE Baseline | ;1 g16 | 0.523 | 0.616 | 0.889 | 0.667
UniquePose Model
K=32 Our
Model 0.546 | 0.849 | 0.6 | 0.636 | 0.911 | 0.711
HPE Baseline
Thermal odel 0.675 | 0.896 | 0.784 | 0.730 | 0.919 | 0.838
K=16 Our
Model 0.681 | 0,948 | 0.739 | 0.746 | 0.973 | 0.811

Tablel. Comparison of few-shot learning (meta-test)
on UniquePose and Thermal dataset of HPE baseline
model and Our model. Our model shows slightly
higher AP and AR.

The train loss during meta test is shown in Figure
4 to evaluate how fast the model converges. Although
there is not much difference, but in case of (a)
UniquePose, the train loss of our model decreased
faster. In a relatively short epoch, both models were
trained enough to show about 98% of the train
accuracy. However, there seems to be an overfitting
problem due to small dataset, so further experiments
are needed.
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Figure 4. Train loss during meta test.
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