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Abstract

Function-based object classification is another way
of classification that additionally utilizes human action-
related information. QOur network models, visuo-motor
map (VMM) and visuo-motor classifier (VMC) learn the
relationship between images, action, and object labels.
By implementing VMM and VMC in 3 ways, Conv3D,
S3D+attention, and detection network using Faster-RCNN,
the utility of action information in object classification and
detection are thoroughly investigated. All three models
showed greater-than-or-equal-to performances compared
to baseline algorithms, and the quality of output is shown
in images and attention mappings.

1. Introduction

Object classification has been the core of vision machine
learning, and still it is getting attention as a test bed when-
ever new techniques come out. Being a typical example
of supervised learning, object classification learns the map-
ping between the static image and corresponding object la-
bel. Stillness in image data demanded many techniques
to improve robustness in classification: data augmentation
technique, attention mapping, and carefully organized deep
convolution layers. However, object classification still eas-
ily suffers from occlusion, viewpoint variation, etc. One
might say then video object detection within a sequence of
images will ease the problem, but video object detection in-
cludes temporal information only in a region proposal stage,
not in classification [31].

Therefore, we are suggesting utilizing a sequence of im-
ages in object classification, also with additional action la-
bels. Figure 1 shows main difference between our approach
and others, video object detection and object classification.
There have been some approaches similar to ours, function-
based object classification (FOC) and affordance learning.
Historically, FOC has been connecting images and addi-
tional information gathered from additional physical de-
vices like haptic devices [ 1] or 3D imagery [12,21]. Acquir-
ing these datasets requires more prerequisites, so it is not
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Figure 1. Difference between video object detection, function-
based object classification, and object classification

easy to use freely. However, affordance learning, which has
a similar stance with FOC, has been freer in dataset selec-
tion than FOC. They usually used video datasets to extract
human interaction with objects [19]. Therefore, this shows
the possibility that FOC utilizes video datasets to get action-
related information. Affordance learning yet required labo-
rious target tagging, which still narrows down the available
data usable.

In this paper, FOC without an explicit action label is
proposed. This model has two networks, visuo-motor map
(VMM) and visuo-motor classifier (VMC). VMM predicts
action features from a sequence of image inputs, and VMC
predicts object labels from a combination of images and ac-
tion features. By utilizing both images and actions, this
model solves typical classification difficulties like occlu-
sion. In addition to the classification, we tried object detec-
tion which is the typical task with video datasets. To do so,
we broaden the opportunity the model gets from the wider
area, as the detection technique is useful for multi object
environment.

There are 3 models proposed in this paper, Conv3D,
S3D+attention, and Faster-RCNN with attention. All three
models share the core structure (Figure 3), VMM and VMC.
Images and attention maps are shown to prove the better
performance the models get from utilizing the action infor-
mation.



2. Related Work
2.1. Affordance Learning

According to Gibson [8], object affordance is potential
”action possibility” defined in tools for functional charac-
teristics. The notion “action possibility” drew attention in
robotics, producing a lot of previous studies to detect object
affordance, especially regarding an ability to grasp objects.
Do et al [7] proposed end-to-end deep learning architec-
ture to learn object and affordance detection simultaneously.
Also, Ahn et al [20] designed the framework with two sepa-
rate modules: Convolutional Neural Network (CNN) and
Sense Condition Random Fields (CRF), and tested those
at real-world scenes. By previous studies, the existence of
relationship between object and affordance (or action) can
be confirmed, and is likely to help the inference of each
other. Our model does not explicitly infer the affordance of
an object, but uses affordance-like action information when
learning object classification.

2.2. Object Classification and Detection

Deep CNN has become a dominant method for object
detection from single image [10, 11,13,17,22,24]. Among
them, [22] presented a method for effectively inferring re-
gions where objects exist using a region proposal network.
[13] secures better performance than the existing residual
network structure by applying residual transformation. Our
proposed method is built upon ResNet-50 [13] which is a
popular deep CNN algorithm. However, object detection
in videos is difficult no matter what architecture is used,
because the dataset has complexity and variation such as
out-of-focus, occlusion, motion blur, and rare appearance
of the object, which cause performance decay. Therefore,
the main task of video object detection has become to find
how to enhance the detection performance of every frame.

Many studies attempted to increase the detection perfor-
mance by aggregating information dwelling in between the
low-quality image frames. Tubelets with convolutional neu-
ral networks(T-CNN) [14, 15] assimilate temporal and con-
textual information which are locally propagated via nearby
frames. Flow Guided Feature Aggregation(FGFA) method
[32] and Deep Feature Flow [33] utilize local aggregation of
feature maps across adjacent frames. Our model has sim-
ilar properties in terms of aggregating compressed image
sequences and action information to select suitable object
labels.

2.3. Action Recognition

Action recognition has been an important topic in video
understanding, since ground-truth action labels in video are
hard to obtain. Our model also has to learn action recogni-
tion for the further object classification tasks. Action recog-
nition tends to utilize long-range time information like fol-
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Figure 2. Classification results. The predicted label is shown with
the confidence score and the ground-truth label is shown inside
the parenthesis. Red label indicates the wrong prediction and the
green indicates the right. The attention map shows the focused
area for action prediction.

lows. Sudhakaran et al [23] presented an action recogni-
tion framework called EgoACO that utilizes class activation
pooling and Long Short-term Attention. Temporal Segment
Network(TSN) provides action recognition based on video
framework using long-range temporal architecture [25,26].
Zhao et al [30] proposed temporal action detection frame-
work, called Structured Segment Network(SSN) which con-
structs temporal pyramid using activity and completeness
classifiers. However, there was a similar approach to ours,
Yang et al [28] proposed a weakly supervised object detec-
tion network considering not only the object class label but
also the action label of the data. They used a keypoint de-
tection network, which is hard to be incorporated into the
egocentric video dataset.



Algorithm 1 VMMC Detection module for one image

Require: %, [0,1,041, 012, 042]%, [0]%
Ensure: [*
I* = ROI(RPN(I*))
1%, A% = VM Mposheaa(I*)
Function{VMCpgozpred
[ilm, ﬁyl, ing, ﬁyg}]fw, [alk, = HandAction(Ak)
OF = Obj Predatin: (A, I%)

> Get image feature from VGG16, assume N: total number of bbox, M: hand/obj bbox number

[amh 6yla 6a:2a 6y2]§€\4 = Objpredattn2(0k7 [ila:la iLyla hm27 h'L/Q]IIC\/[)

EndFunction

[(A)xh 611/17 (3332, 6y2]§v = COTLCCLt([ilxl, ilyh }Alx27 }Alyg]ﬁ/[, [éxla 6y1, éxg, 6y2]§€\4)

(6]} = Concat([o]}y, [a]},)

3. Method
3.1. Preliminary

A sequence of images {I; }7_; in a video has its pairs, se-
quences of action labels {a;}7_; and object labels {o; }1_;.
As one kind of action continues across a few frames, an
image sequence can be grouped into several subsets under
the action criteria. Assume K distinct actions present in a
video, then sequences of images, actions, and objects can
be divided as follows.

{It},irzl = [{Itl }; 7{Itk Zi, ,{ItK}ﬁg] (1)
{a Y, = [a', ..., a", ..., a"] )
{o}, = [0, ..., 0", ..., 0"] 3)

a® and o is the action label and object label paired with
the sequence of images {IF}¥¢, and A* is the action feature
inferred from {Itk ’,:g with the start time ks and the end
time ke.

In the detection task, each image has its own hand-
object bounding boxes. Assume an image [; has N ob-
ject bounding boxes, then a target of the image is a dic-
tionary with 2 keys, boxes {[031,0y1, 0z2, 0y2]n }+ and la-
bels {[o]n}:. Also, an image I; has M hand bounding
boxes, then a target of the image is a dictionary with 2
keys, boxes {[hq1,hy1, hao, hya]ar e and labels {[a]ar}s.
There are hand state notations (left and right) in the dataset,
but action labels are used instead as the state information
is not needed. M is less than or equal to 2, so in prac-
tice, hand bounding boxes and object bounding boxes are
concatenated before moving into the Faster-RCNN module.
After concatenation, the notation is unified.

In this study, the pre-defined number m of frames are
randomly chosen from {I}}¥¢ to be an input to the model,
and the notation of that would be in short, {I*},, after-
wards.

3.2. Visuo-Motor Map and Visuo-Motor Classifier

Visuo-Motor Map(VMM) and Visuo-Motor Classi-
fier(VMC) are reciprocally developed to successfully clas-
sify or detect objects in videos, with the aid of action infer-
enced. They have 3 forms in total, gradually complexified
to deal with the problems arose in the previous form. First,
starting from the basics, VMM and VMC are mainly de-
fined with Conv2D and Conv3D, dealing with the sequence
of images using Conv3D. After that, to focus more on ob-
ject classification, S3D combined with the attention is pro-
posed. The third model is developed for the detection task,
using the core structure of Faster-RCNN.

3.2.1 Object Classification

VMM generally, is trained to inference the relationship be-
tween the sequence of images and the action label.

(1%}, AR 6% = VMM ({I*},) 4)

After that, VMC is trained to inference the object label
from the sequence of images and the action feature from
VMM, as shown in the equation 5. However, the sec-
ond model, S3D+attention model is different from the first
model, in the sense that it uses attention. Also, instead of
image sequences, it uses one ResNet image feature as key
and value in the attention, which can improve the perfor-
mance since object classification is usually done on a static
image. The equation 6 conceptually shows how attention
works as VMC.

oF = VMCH{I*Y,,, AF) 5)

As shown in Figure 4, the flow between Conv3D model and
the S3D+attention model is similar, yet different in terms
of the layers numbers used in each inference. As the pre-
trained S3D feature can represent an enough action infor-
mation, S3D+attention model more focused on improving
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Figure 3. An overview of our entire model, VMM and VMC.

object classification performance.
0" = VMCuapun (A" {1}, {1} ) 6)

VMM and VMC in the classification task are trained to-
gether, but they can be separated and analysed individually.
To confirm the effectiveness of action conjecture, the visu-
alization of attention, Grad-CAM [9] is used.

3.2.2 Object Detection

Different from the object classification, the object detection
uses more human labor required information, thus provides
more action related information. So, the object detection
gets more benefit when utilizing action information.

Our model is based on the Faster-RCNN model provided
in the torchvision. The box head is transformed to work as
VMM and the modified box predictor with 2 attention net-
work works as VMC. Refer to Figure 4c, the box head out-
puts pre-object features and action features. Both features
are classified and predicted as boxes in VMC, the box pre-
dictor. The box predictor uses two attention module, one
for object feature and one for object bounding box predic-
tor, refer to the algorithm 1 for more details.

3.3. Baseline Algorithm for Performance Evalua-
tion

3.3.1 Object Classification

Based on ResNet [13], a modified network using grouped
convolution named ResNeXt is introduced in [27]. The bot-
tleneck layer of ResNet consists of three sequential convo-
lution networks with a residual channel. ResNeXt has sim-
ilar architecture, but the convolution layers are modified.
Unlike ResNet, input channels of the the second convolu-
tion layer are divided, convoluted, and then concatenated.
Utilizing this structure enhanced classification task perfor-
mance without increase in model complexity. For object
classification task, this network was chosen as a baseline.
The network outputs single classification label class for a
given input image.

3.3.2 Object Detection

An open source algorithm named MMDetection [3] was
adopted as a baseline network to compare the object detec-
tion performance of the proposed framework and the bench-
mark. The two stage detector structure consists of Back-
bone, Neck, Dense-Head and ROI-Head networks. Through
configuration settings, the detector can be customized based
on various pre-trained backbone networks including Fast R-
CNN [10], Faster R-CNN [22], and R-FCN [5]. The net-
work outputs bounding box, confidence score, and classifi-
cation label for the detected objects in each RGB channel
input image. For our baseline configuration, Faster R-CNN
backbone was adopted.

4. Experiments
4.1. Dataset and Evaluation Setup

In order to train and validate the VMM and VMC mod-
els, dataset containing various objects and human actions
was needed. In this study, the Epic-Kitchens [60] dataset
which satisfies these requirements was utilized. Each subset
video of the dataset consists of RGB image frames recorded
from egocentric, first-person view. The description of the
scene, verb and noun labels for each action and object pair,
and start / end frame information for each action are pro-
vided from the performer of the video. The bounding boxes
of the narrated objects are suggested by Faster-RCNN and
annotated by Amazon Mechanical Turk (AMT) workers.

4.2. Implementation Details

Our main networks are VMM and VMC. We aim to ex-
pand the architecture proposed by C. Castellini et al [2].
VMM and VMC were proposed to be implemented sepa-
rately at first, but as our dataset is different from the original
paper, we could combine two networks. However, we gave
separate notation for two networks for the direct compari-
son.

Conv2D and 3D. The backbone network of VMM is
the modified ResNet-50 [13] proposed by Tushar et al [19].
By using modified ResNet-50, the sequence of images can
be pre-processed together, outputs an integrated image fea-
ture. After the backbone, the images passes through Conv3d
layers to produce image and action features, then Conv2d
layers to produce classification logits from the features. The
fully-connected layers were not used for better visualiza-
tion of Grad-CAM attention. The dimension reduction of
input feature inside the Conv2d layer is required due to ab-
sence of the fully connected layer, so it is done with the
custom squeeze functional layer. Batch normalization and
the ReLU/Leaky ReLU activation layers are applied by de-
fault.

S3D  Separable 3D CNN (S3D) [29] has multiple lay-
ers of 2D+1D Inception blocks, which easily learn spatial
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Figure 4. Network structure

and temporal information. Therefore, S3D can work as use-
ful action feature extractor. In this paper, S3D pretrained on
Kinetics-400 dataset is used [18], except for the last layer
which is used for the action classification. For action clas-
sification, the additional processing with Conv3D layer is
done. For object classification, each image in the sequence
is separately processed with pre-trained ResNet50. The im-
ages act as a key-value pair in the attention, and the action
features from S3D act as a query. A linear layer is used to
extract object classification score from the resultant atten-
tion value.

Scaled Dot product Attention Scaled dot product at-
tention is the simplest form of attention. Query, key, and
value should have the same batch size and the same length
either in the width or height. The attention score is calcu-
lated within the dot product between query and key, then the
attention coefficient is calculated from the weighted sum of

the value, weighted by the attention score. More details can
be found in Figure 4. Two models among 3 models sug-
gested in this paper use this attention, S3D+attention model
in classification task and the detection model.

Faster-RCNN. Faster-RCNN [22] is a two-stage ob-
ject detector, which has a region proposal network and the
box predictor network. We used VGG16 pre-trained net-
work as a backbone, then the default region proposal net-
work the torchvision provides. After multi-scale ROI align,
the box head gets convolution features. The default box
head usually just flatten the input and reduce the dimen-
sion by fully connected layers. However, to combine infor-
mation throughout the sequence of images, the convolution
operation preceded before fully connected layer, outputting
action feature.

The box predictor utilized two attention modules. First,
it predicted action class and the hand bounding boxes with
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Figure 5. Detection results of proposed framework. Bounding
boxes and names denoted in green are the ground truth data and
the prediction results are displayed in red color.

fully connected layers. Then, it used action feature and im-
age features from box head, as a query and the key-values
respectively. For the object classification, the resultant ob-
ject feature from the first attention passed through the fully
connected layer. Lastly, the hand bounding boxes contex-
tualized the object features to make the object bounding
boxes.

Dataset loader.  For a dataset loader, we randomly se-
lect one image frame between the start and stop frame of a
specific action capture for the Epic-Kitchen dataset. Then,
the shared action and object labels of the selected image
frames are used. Also, input images are resized to 256 pix-
els and transformed using random crop and random hori-
zontal flip. The images had to be cropped into 224 size in
S3D+attention model due to memory deficiency. In the de-
tection task, no other transforms than the normalization is
used, to conserve the ratio and the size for the bounding
box coordinates.

The bounding boxes provided in the dataset should be
read with protobuf library which is provided. However, the
hand bounding boxes and the object bounding boxes could
not be opened at the same time, due to the library import
error. In consequence, they had to be pre-processed in ad-
vance to be used in the detection model.

Our model is trained along with an Adam optimizer
with 0.8 betal value with 0.0001 learning rate. In Conv3D
model, the batch size was 30, and 4 frames were concate-
nated to be an image sequence input. In S3D model, the
batch size was 2, and 5 concatenated image frames were
used. In the detection task, only 2 images could be pro-
cessed at the same time due to the limitation in GPU mem-

ory.
4.3. Main Results

Classification.  The final test accuracy is 26% for the
action classification task and 4.7% for the object classifi-
cation. Two models (Conv3D and S3D+attention) showed
similar results. The case of action classification seems to be
relatively accurate and learned, but there was a data imbal-
ance problem with too many ’take’ and ’put’ labels (Figure
2b). In object classification, ground truth objects were of-
ten not visible in the sample image due to frame escape or
illusion, occlusion, etc (Figure 2a). This can occur from
the random selection of one image between start and stop
frame. To improve object classification performance, we re-
fer to the object-action correspondence frame list provided
in the dataset. However, the list was just a list of evenly
sampled frames, sampled every 30 frames. The substitution
of sampling strategy was not very effective. In order to in-
vestigate the reason of poor classification, the last layer of
the model is visualized with Grad-CAM (Figure 2c¢) to ver-
ify whether the model focuses on the right place for the task.
The attention map highlights the area where the action is as-
sumed to be occurred, but the attention map is very broad
and not focused. The high gap between object and action
classification accuracy is due to the nature of the dataset,
but also due to the appearance of multiple objects in an im-
age. The object classifier gets distracted by the multiple
objects.

Detection.  The final detection results are shown in
Figure 5. Ground truth multiple object bounding boxes are
given in the dataset, but the quality of ground truth is very
disappointing. Hands in the dataset are prone to be classi-
fied as carrot, because the ground truth labelled human arms
as carrots multiple times. Also, the bounding boxes tend to
be bigger than the actual object. The inference result has
low correspondence with the ground truth, but the proposed
region seems to be accurate enough.

4.4. Baseline Classification and Detection Results

ResNeXt Initialized ResNeXt network model was
trained and tested for object classification task using Epic-
Kitchens [6] dataset. The cardinality of the bottleneck layer
was set to 32, and classification loss for each mini batch was
defined as the cross entropy loss. Training loss decreased
during the training process, but the validation loss had no
improvement. The model was not able to learn the ground
truth object label from the given dataset, with a test accu-
racy of under 3%.

The reason for the low performance index is due to
the unique characteristics of the Epic-Kitchens dataset. In
the image classification datasets including STL-10 [4] and
CIFAR-100 [16], there is one main object in the given single
image. In Epic-Kitchens, however, various objects as well



as object related to the participant’s action exist together in
the image taken at a relatively wide angle. Although the ob-
ject of interest exists in the image and is correctly labeled
as the ground truth, it is not easy for the vanilla ResNeXt
network to find the main noun in the given image and to
classify the entire image based on the label of the noun.
Therefore, it can be concluded that in order to find the main
noun related to the motion and perform the image classifica-
tion task according to this, it is necessary to spatially attend
to the image frame and / or infer to the participant’s action
as demonstrated in the proposed object action recognition
framework.

MMDetection To test the object recognition perfor-
mance of the baseline toolbox [3], images from the Epic-
Kitchens [6] dataset were applied to the backbone network
provided in the source code. Figure 6 shows some frames
among the results of performed object detection task for an
image set input with confidence score threshold set to 0.5.
The classified label of the objects are displayed on top of
the bounding boxes. The detection results of MMDetection
suggest that the network is able to recognize most of the
major objects present in the given image frame. However,
there were some limitations regarding hand object detec-
tion and labeling. Since the region proposal network of the
backbone layer sets equal importance to each pixel, hand
held objects were misclassified as ’person’, combined with
the participant’s hands and arms.

Moreover, at most two labeled action noun objects and
their bounding boxes are present in each frame of Epic-
Kitchens dataset ground truth label data. This means that
only one or two objects used in the participant’s action or
the ones ready for use are labeled. Bounding boxes pre-
dicted by MMDetection, however, are generated from the
region proposal network without being supervised to con-
centrate more on specific image regions where hand-object
actions take place. Although various objects in the given
scene are well detected by the network, ground truth object
detection accuracy measures (intersection of union, mean
average precision) marked significantly low scores. The in-
ference results of baseline algorithm support our assump-
tion that taking not only the object pixels itself but also the
related action into account is necessary for enhancing de-
tection performance especially for objects directly involved
in the participant’s action.

5. Conclusion

This paper introduced an object action recognition
framework using visuo-motor map and visuo-motor clas-
sifier structure. Convolution layers and S3D layers were
adopted for object and action classification tasks, and object
detection was performed based on Faster R-CNN network.
S3D network was introduced to overcome the limitations of
Conv3D, but the results confirmed that only slight improve-

(a) Correct object class labeling results with bounding box intersection of
union accuracy of 0.446.

(b) Noun detection fail case. Hand held object is classified as a person,
together with the participant’s hands.

Figure 6. Multiple object detection and classification results using
MMDetection. Bounding boxes and names denoted in green are
the ground truth data and the prediction results are displayed in
orange color.

ment was gained regarding the classification performance.
The contribution of the research stands out when comparing
the object recognition results of the proposed framework
with the baseline algorithm results. Unlike other datasets
mentioned in section 4, the images in the Epic-Kitchens
dataset contain multiple surrounding objects in addition to
the ground truth object used directly for hand-object action.
Therefore, it is difficult to discriminate the main noun class
only with inference to the single image frame without ac-
tion recognition or attention, and this was demonstrated by
deteriorated classification and detection performance based
on ResNeXt and MMDetection, respectively.

Future works aim at resolving major implementation is-
sues caused by the lack of resources. Increase in batch size
and the number of epochs, applying multi-head self atten-
tion layer may enhance the performance of the classifier.
Also, training and testing on various datasets are expected to
generalize the network capabilities, allowing the proposed
framework to perform well on diverse scenes and actions.
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