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Abstract

Photographs that do not satisfy quality standards are a
common problem. But deblurring the given image is an
ill-defined inverse problem that is hard to solve. State-
of-the-art network architectures for image deblurring are
generative model frameworks including GANs and encoder-
decoder networks. The Generative Diffusion Process, which
is also called as diffusion model, is a new branch of a gen-
erative model framework that is in the spotlight in various
image restoration tasks such as Super Resolution. How-
ever, there are still insufficient experimental attempts to see
if the generative diffusion framework without task-specific
design can be applied to other image restoration tasks as
well. In this work, we first investigated whether the genera-
tive diffusion framework without task-specific design is suit-
able for the image deblurring task compared to the existing
approaches. Unlike an image classification task which has
considered ”Train-Test Resolution Discrepancy”, the eval-
uation of the model performance considering the resolution
discrepancy has not received attention in the image deblur-
ring task. Thus we compared the diffusion model’s deblur-
ring performance to the existing models in a more general
image deblurring setting where the train-test resolution dis-
crepancy exists rather than a standard-setting where two
resolutions are the same. And by inspecting the iterative
steps of a diffusion-based deblurring process, it has been
attempted to visually understand this generation process.

1. Introduction
Photographs that do not satisfy quality standards are a

common problem: Shakes of the camera, fast object mo-
tions and depth variation introduce blur to the image or the
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resolution of the image is unsatisfactory, making it difficult
to perceive details. The additional details that a deblurred,
high-resolution photo provides are useful in many appli-
cations, including object detection [7] and medical imag-
ing [14]. Image blur and low resolution can be modeled as
follows:

IB = (K ∗ IS) ↓s +N (1)

where IB , IS are the blurry and sharp images, respectively,
K is the blur kernel, ↓s is a downsampling operator with a
scaling factor s with s ≥ 1 andN is additive noise [1,9,24].
Both image deblurring and Super-Resolution (SR) are con-
cerned with restoring IB from IS , either with (non-blind) or
without (blind) sharp image data IS . Thus, image deblur-
ring and SR are ill-defined inverse problems, i.e. challenges
arise because multiple sharp images match the same blurry,
low resolution image. As a result, image priors are required
to restrict the solution space.

Recently, CNNs (convolutional neural networks) have
been successfully used for both tasks without explicitly es-
timating, effectively learning image priors from large-scale
image data [1, 17]. State-of-the-art (SOTA) network archi-
tectures for image deblurring are generative model frame-
works including GANs (generative adversial networks) and
encoder-decoder networks. GAN-based approaches formu-
late the deblurring task as a minmax-game between a gen-
erator and a discriminator network [8]. The generator takes
the blurred image and a noise vector as input and tries to cre-
ate a plausible deblurred image, that the discriminator can-
not distinguish from the true sharp image [15,16,26]. How-
ever, GANs are often difficult to train with mode collaps-
ing being a well-known issue [2]. Encoder-decoder models
downsample the blurred input image while generating fea-
tures that encode broad contextual information, and then use
upsampling operations to restore a sharp image of the same
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size as the input [3,25]. [3] is currently the most competitive
image deblurring network.

Another framework of generative models, the generative
diffusion process that is also called diffusion models, has re-
cently entered the spotlight in the related task of SR [6,19].
The diffusion models are a class of likelihood-based mod-
els that learn a reverse diffusion process that starts at a pure
white-noise image xT ∼ N (0, I) and gradually removes
noise to arrive at a sharp image x0 according to learned
conditional transition distributions. According to [6], the
diffusion models achieve SOTA performance on SR tasks,
which was previously held by GANs. Additionally, diffu-
sion models are easier to train and capture more diversity
than GANs [6]. Due to its SOTA performance, the gener-
ative diffusion process is under active research, but several
experimental attempts are still lacking.

Both SR and image deblurring tasks aim to have high-
resolution images from given low-resolution images. But
in the case of a recent SR task, we focus on the aspect of
”generation” from the image of static scenes of lower res-
olution. And in the case of a deblurring task, we want to
focus on the aspect of ”restoration” from the images which
was obtained from the more dynamic scene such as camera
shake. Thus, the existing SR and Deblurring models are de-
signed task-specifically and there is no universal framework
that performs both tasks generally. Based on the similarity
of SR and image deblurring task, we investigated whether
the diffusion model without task-specific design is suitable
for image deblurring as well and its deblurring performance
was compared to both SR and deblurring models in a more
general deblurring setting.

The traditional approach before the era of deep learning
estimated the explicit kernel for deblurring, e.g. motion ker-
nel for motion blurred image [20], which partially explains
the deblurred result. But the existing SOTA models for the
image deblurring task is an almost black-box model which
we cannot interpret. Since the diffusion model performs the
deblurring process through iterative steps, by inspecting the
iterative steps of a diffusion-based deblurring process, it has
been attempted to visually understand this generation pro-
cess.

2. Related works
Image deblurring task is traditionally treated as a decon-

volution problem, which can be treated either in a blind
or non-blind manner. Since the era of deep learning, vari-
ous techniques have boosted performance on image deblur-
ring tasks. However, the image deblurring model which
can be applied to the blurry image of all situations still has
a long way to go. To handle this, recent studies propose
models for blurred images limited to more specific situa-
tions: for instance, Chen et al. [4] proposed to use Non-
Blind Deblurring Network (NBDN), which is composed of

fidelity term and prior term, and Hyper Parameter Estima-
tion Unit (HPEU) to deblur night blurry images. The pro-
posed method can deal with different blur level images us-
ing HPEU and generate fewer artifacts that are produced
due to pixel saturation. However, for NBDN, as the net-
work deals with saturated pixels, it may not work well with
inputs having both day images and night images. Also, as
it is a non-blind deblurring process, the method is highly
ill-posed.

2.1. Generative adversarial network

Commonly used network architecture for image deblur-
ring task is GANs. GANs, which put the generator into
competition with discriminator, are widely applied to the
image to image translation problems. Kupyn et al. [16]
proposed DeblurGAN-v2 using Feature Pyramid Network
(FPN) as a generator and relativistic discriminator with a
least-square loss as a discriminator. Especially, they applied
FPN to deblurring tasks for the first time to deal with mul-
tiple blur levels. Also, for its backbone frame, they could
choose between Inception-ResNet-v2 backbone and Mo-
bileNet Depth-wise Separatable Convolutions (DSC) which
have a trade-off between performance and efficiency.

As datasets used for training in the deblurring tasks are
synthetically made, Zhang et al. [26] proposed GAN archi-
tecture where two models are used: learning to Blur GAN
(BGAN) and learning to DeBlur GAN (DBGAN). BGAN
takes Real-World Blurred Image (RWBI) dataset as input to
evaluate the discrepancy between synthetic blur images and
real blur images using Realistic Blur Loss (RBL), and gen-
erate realistic blur images. These images are then input to
DBGAN and DBGAN trains how to deblur blurry images.

2.2. Encoder-decoder network

Another commonly used network architecture for image
deblurring task is encoder-decoder networks. Zamir et al.
[25] proposed Multi-stage Progressive image Restoration
(MPR) Net. They use a combination of encoder-decoder ar-
chitecture and single-scale feature pipeline architecture by
adapting U-Net architecture and Original Resolution Sub-
network (OSRNet). As the method is composed of multiple
stages, the connection between stages is done by applying
Cross Stage Feature Fusion (CSFF) and Supervised Atten-
tion Module (SAM).

Chen et al. [3] adopted normalization and surpassed the
SOTA on various image restoration tasks. As image restora-
tion tasks use a small mini-batch size, it is hard to adapt
batch normalization (BN) but instead, they used instance
normalization (IN) in order to build denoiser. The proposed
method is mainly composed of two U-net architecture-
shaped stages with HIN blocks inside, so-called HIN Net.
HIN (Half Instance Normalization) block is a process that
applies IN to half of the channels and the rest half is trans-
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ferred as their identity. Two stages are connected using
CSFF and SAM.

2.3. Generative Diffusion Process

The generative diffusion process which is also called dif-
fusion model is a new branch of a generative model frame-
work based on a stochastic process and is in the spotlight re-
cently. Saharia et al. [19] used a diffusion model framework
to handle the SR task mentioned above and achieved com-
petitive performance. Dhariwal et al. [6] demonstrated that
the diffusion models even beat GANs on image synthesis
tasks. And Kawar et al. [13] used the conditional diffusion
model to reach the competitive performance in the image
denoising task. Although the diffusion models are show-
ing good performance in various image restoration tasks,
experimental attempts regarding the diffusion models are
still lacking. Therefore, it seems worth trying to investigate
whether the generative diffusion model without any task-
specific design is suitable for the image deblurring task as
well.

3. Method
The Generative Diffusion Process is elaborately based on

a stochastic process. A further formal description is given
in the following subsection. We may assume that the blur-
ring process (1) can be approximated by the forward diffu-
sion process. Thus by training the reverse diffusion process,
which is the inverse of forward diffusion process, we may
hope to recover the desired deblurred image.

3.1. Background

According to the work of Jonathan Ho et al. [10], con-
sider the forward diffusion process q which is Markovian
process. The forward diffusion process can be viewed as
noising process, in other words it perturbs the given image
xt−1 at a time step t − 1 to the image xt at a time step t
with Gaussian noise where αt controls the amount of noise
perturbation at a time step t.

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) (2)

Then we can iterate this process up to sufficiently large T
so that xT becomes almost pure Gaussian noise. And by
marginalizing the intermediate step, we can get the follow-
ing distribution for xt

q(xt|x0) = N (xt;
√
βtx0, (1− βt)I) (3)

where βt =
∏t
i=1 αt. To have actual generative process,

we need the reverse process of this noising forward pro-
cess, i.e. reverse diffusion process q(xt−1|xt) of equation
(2). It cannot be derived directly, but according to [10], if
we condition the variable x0, we can derive the posterior
distribution q(xt−1|xt, x0) instead.

q(xt−1|xt, x0) = N (xt−1;µ, σ2I) (4)

µ =

√
βt−1(1− αt)x0 +

√
αt(1− βt−1)xt

1− βt
(5)

σ2 =
(1− βt−1)(1− αt)

1− βt
(6)

However, in the actual generation phase, we do not have
an access to the original image x0. But note that from the
equation (3), we can put as

xt =
√
βtx0 +

√
1− βtz (7)

where z ∼ N (0, 1). Thus when given xt only, we can con-
versely approximate x0 as

x0 ≈
xt −

√
1− βtz√
βt

(8)

Therefore, by plugging (8) in to equation (5), we can ap-
proximate the reverse diffusion process q(xt−1|xt) which
corresponds to denoising process, which can be used for
data generation.

There is also another perspective on diffusion models.
Yang Song and Stefano Ermon [21] suggested the score
matching framework which also perturbs the original im-
age similar to the forward diffusion process of [10]. At
later work of Yang Song et al. [22], these two perspec-
tives were integrated as a one stochastic process framework
with Stochastic Differential Equation (SDE). The integrated
framework of the forward diffusion process which perturbs
image can be modeled as the solution of Ito SDE

dx = f(x, t)dt+ g(t)dw (9)

where f is vector-valued function, g is scalar function and
w is Wiener process. If we reverse this process, we can gen-
erate the desired image, i.e. starting from noise xT , we can
obtain sample x0 ∼ p0 where p0 is original data distribu-
tion. The desired reverse process of (9) is also formulated
as SDE and given as follows:

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄ (10)

where w̄ is standard Wiener process when time flows back-
wards and the estimate of log pt(x) is called score. With
this framework, the diffusion model can be trained by min-
imizing the following objective:

E

[
λ(t)

2
||sθ(xt, t)−∇xt

log pt(xt|x0)||22
]

(11)

with proper weighting function λ(t). With above mentioned
SDE framework, inference of the trained model, i.e. gener-
ation process of the data, becomes equivalent to solving the
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equation (11). Since there are various ways of solving SDE,
it means that the data generation process can have various
methods [12, 22] to be selected. And it may be possible to
visually analyze the pattern in which data is generated when
different inference methods are selected.

3.2. Diffusion Process with Conditional Input

For actual training, the U-net shape model architecture
is used to approximate the reverse diffusion process. By
simply using conditional U-net architecture, we can use the
conditional input to the model. There are already some ap-
proaches [13,19] trying to solve the image restoration prob-
lem by simply utilizing the diffusion process with condi-
tional input and without any task-specific loss term. They
have shown descent performance in the SR and the image
denoising task respectively. However, most of the papers
that applied the conditional diffusion model to a specific im-
age restoration task focused on showing the excellent per-
formance through final visual results but did not talk about
how the generation process went through in detail.

Thus, similar to [13,19], the conditional diffusion model
was trained without any task-specific design in this work.
Simply utilizing the conditional U-net architecture, the
diffusion-based deblurring process could be trained in a
conditional diffusion model framework. The existing de-
blurring approaches based on GANs including [16, 26]
are usually trained with an additional loss term with task-
specific design. This approach seems more flexible but it of-
ten causes the training more unstable, which requires heavy
experiments to find the proper weighting hyper-parameter
of the additional loss term. It means that a model framework
that can perform the desired task properly without any task-
specific design seems to have more generalization power.
The conditional diffusion model was trained to test this idea,
i.e. whether the generative diffusion framework can gener-
alize well to another kind of image restoration task, image
deblurring without any task-specific still.

3.3. Visual Understanding

Combined with the fact that various experiments to ex-
plain the generation process of the diffusion model are still
lacking, we not only trained the conditional diffusion model
to perform the image deblurring task but also attempted to
visually understand the diffusion deblurring process. The
most important hyper-parameters in the training of diffusion
model are the start and end values of beta that determine the
degree of noise at each step, and the number of total time
steps. In this work by visualizing the intermediate results
from iterative steps of a diffusion-based deblurring process,
we attempted to further the understanding of this restoration
process. Based on the results, the additional experiments
were conducted by changing the number of time steps, and
as a result, the effect of the time step, which is an impor-

Method DDPM HAN RCAN MIMO-Unet

PSNR (64x64) 22.17 25.17 25.18 28.8
PSNR (128x128) 22.48 24.1 24.03 28.42
Parameters (M) 20.74 15.74 15.3 9.91

Table 1. The average PSNR, and the number of model parame-
ters. Every models were trained on 64x64, and 128x128 size im-
age patches respectively and tested on 64x64 size image patches
to compute PSNR.

tant factor in the training of the diffusion model, could be
interpreted indirectly in the diffusion deblurring process.

And by introducing the self-attention layers inside the
model, we can try to visualize the inside of the model while
performing the deblurring task. Given the L embeddings,
it is well known that the naive self-attention mechanism
has quadratic complexity regarding the number of embed-
dings i.e. O(L2). In the case of spatial embeddings, since
L = HW , the self-attention has a quartic complexity re-
garding image size. Due to its high computational com-
plexity, the naive self-attention layer cannot be fully utilized
inside the U-net architecture. To deal with this problem, we
tried 2 approaches: 1) Using a self-attention layer only to
sufficiently downsampled feature resolution and 2) Using a
linearized self-attention layer that has linear complexity.

3.4. Train-Test Resolution Discrepancy

In addition, let’s consider the actual situation where the
image deblurring should be performed by using the trained
model. There is no guarantee that the resolution of the im-
age used for training and the resolution of the image to be
deblurred are the same. Thus, the performance of the de-
blurring models concerning the resolution discrepancy be-
tween the train and test image should be considered. The
performance difference depending on the discrepancy be-
tween train and test resolution was investigated in the image
classification task [23], but such approaches were lacking in
the image generation area including the image restoration
tasks. The existing deblurring methods are trained with a
fixed size of the image patches and also tested with the same
size of image patches qualitatively and even quantitatively,
which does not consider the train-test resolution discrep-
ancy. Thus, we tried to evaluate the diffusion model’s de-
blurring performance in a more general situation where the
train-test resolution discrepancy does exist and compared it
to the existing SR and deblurring models.

4. Results
To train and test the image deblurring model in a non-

blind setting. The dataset should consist of blurry and sharp
images pairs (IB , IS). Chen et al. [4] utilized Flickr’s
copyright-free night images to make blurry and sharp im-
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Figure 1. Qualitative result from the models trained on 128x128
size image patches and tested with smaller 64x64 size image
patches. From the top row to the bottom, images in each rows are
the blurry input images, results from HAN, results from RCAN,
results from MIMO-Unet, results from DDPM, and the sharp im-
ages respectively

ages pairs. But most non-blind image deblurring models
test their performance with already existing datasets such
as GOPRO dataset [17] and RealBlur dataset [11]. Thus,
the GOPRO dataset [17] was used in this work.

4.1. Experiment Setting and Baselines

To train the deblurring model, we used a fixed size of
randomly cropped image patches of the train data, which is
the same setting as the existing deblurring approaches. Both
baseline models and the diffusion models were trained with
64x64, and 128x128 size of patches respectively. The diffu-
sion model used in this work is the DDPM [10]. And since
the DDPM model can be trained in two different ways: the
original framework in [10] and the SDE framework in [22],
the DDPM models were trained with both frameworks for
more extensive experiences. Although the SDE framework
has much more various inference methods than the origi-

nal one, the resulting deblurred image quality was almost
similar. Thus the original DDPM was majorly used for the
performance evaluation. The number of total time steps, i.e.
total iteration steps is the important hyper-parameter of the
training of the diffusion models. And it was set to 2000,
1000, and 400 respectively in this work to understand its
impact in the diffusion deblurring process.

The baseline models were selected from both SR and de-
blurring tasks: 2 SR models (HAN [18], and RCAN [27])
and one of the SOTA deblurring model (MIMO-Unet [5]).
The SR models were trained by simply using the paired GO-
PRO dataset, instead of the paired SR dataset. Since the
diffusion model has shown its great performance in SR task
[19], the diffusion model’s generalization ability to another
task without any task-specific design was compared with
those of the SR-specific models. And beyond its general-
ization ability, the trained diffusion model was compared to
one of the SOTA deblurring models to investigate whether
the diffusion model can achieve the competitive deblurring
performance, not just a relatively better performance com-
pared to SR models.

4.2. Quantitative Evaluation Result

Due to the limit of computational resources, the trained
deblurring model was quantitatively evaluated by using the
64x64 size randomly cropped fixed image patches with
PSNR(Peak Signal-to-Noise Ratio) metric. Since the dif-
fusion models were trained with both 64x64, and 128x128
size image patches, both cases were evaluated quantita-
tively. In the case of 64x64 size training, the evaluation was
performed in a standard situation where there is no train-
test resolution discrepancy. And in the case of 128x128 size
training, we can say the evaluation was performed in a more
general deblurring situation where the train-test resolution
discrepancy exists.

See Table 1 for a quantitative evaluation result. For a
standard case, the result shows that there is some PSNR
difference between SR-specific models and the deblurring-
specific model, which means that task-specific design made
a significant difference in PSNR. And the diffusion model
trained without task-specific design showed the lowest per-
formance on PSNR. There was a significant PSNR differ-
ence from the SR models, so it showed a more PSNR dif-
ference from the deblurring model. Both the original and
SDE framework DDPM showed low PSNR performance
compared to the baselines. For a train-test resolution dis-
crepancy scenario, we could check the PSNR change dif-
ferences. Since 64x64 size image patches contain little in-
formation of the whole image compared to 128x128 size
image patches, when the model was trained with the larger
size of patches, the performance of the model should in-
crease. However, in this train-test resolution discrepancy
situation, it was confirmed that the PSNR performance of
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(a) The blurry input (b) HAN (c) RCAN

(d) MIMO-Unet (e) DDPM (f) The sharp image

(g) The blurry input (h) HAN (i) RCAN

(j) MIMO-Unet (k) DDPM (l) The sharp image

Figure 2. Qualitative Result of Models trained on 128x128 size image patches and tested with original 1280x720 size image.

the baseline models decreased slightly. From this, we can
think that the existence of the train-test resolution discrep-
ancy deteriorated the actual performance of the baseline
models. However, the diffusion model showed some slight
increase in PSNR performance, although its absolute PSNR
performance still lags behind baselines.

4.3. Qualitative Evaluation Result

See Fig. 1 for a second quantitative evaluation case
where the train-test resolution discrepancy exists, i.e. the
deblurred results from the models trained on 128x128 size
image patches and qualitatively evaluated with 64x64 size
image patches. The figure shows that although there was a
significant PSNR difference between the existing SR and

deblurring models, the actual deblurred results from all
baselines were the mere reconstruction of the input blurry
images, which does not show any visual distinctness. The
quantitative evaluation of the diffusion model was the low-
est according to the previous subsection, but the figure
shows that the result from the diffusion model was the most
relatively deblurred one. It means that the quantitative met-
ric, PSRN, could not properly reflect the the significance of
image deblurring task, and the diffusion model was trained
to perform the image deblurring in a more general situation.

Next, to check this situation more visually, the deblur-
ring models trained with 128x128 size patches were quali-
tatively evaluated by using the full size of 1280x720 images.
See Fig. 2 for a qualitative evaluation result with the size of
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(a) The blurry input (b) Result from 50th step (c) Result from 1600th step

(d) Result from 1750th step (e) Result from 1850th step (f) Result from 1900th step

(g) Result from 1950th step (h) Deblurred Result (i) The sharp image

Figure 3. Visualization of the Iterative steps of the diffusion-based deblurring process.

(a) Result from the models with 2000 time steps (b) Result from the models with 1000 time steps (c) Result from the models with 400 time steps

Figure 4. Deblurred results from the diffusion models trained with the different number of steps. From the top row to the bottom, the result
is from the model trained with 2000, 1000, and 400 steps respectively

1280x720. In this case, a large train-test resolution discrep-
ancy exists. The figure shows that actual the results from all
baselines were the mere reconstruction of the input blurry
images, similar to the former case. And the results from the
diffusion models were the most relatively deblurred results,
although there are still blurred regions. Since evaluated
with 1280x720 size images, the degree of improvements
of deblurring can be more clearly and visually confirmed.
Therefore, we can say that the generative diffusion frame-
work was able to be trained to perform the image deblurring
in a more general situation where the train-test resolution

discrepancy exists. Considering that the MIMO-Unet was
trained by using 256x256 size image patches [5], a situa-
tion where the models are trained with 128x128 size image
patches may limit the learning of deblurring. Thus, training
the diffusion model with the larger size of image patches
and evaluating its deblurring performance in a general situ-
ation needs to be addressed as future work.

Apart from the discussion above, the diffusion-based
model has an additional advantage. Previously mentioned
[3,5] architectures have only deterministic deblurred results
once they are trained. It means that if the deblurring process
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was not properly implemented, there is no way to use that
model further. However, since the diffusion-based model
has stochastic property, it can generate various deblurred
results corresponding to the blurry image. And the gener-
ative steps can be more precisely controlled by using the
SDE framework of the diffusion model.

4.4. Visualization of the iterative steps

Due to previous works of unconditional diffusion mod-
els, it has been understood that the generating process of
the diffusion model occurs evenly and gradually during it-
erative time steps. In this work, we visualized the itera-
tive steps of the diffusion-based deblurring process to check
whether this belief is still true for the conditional diffusion
models. See figure Fig. 3 for visualization of iterative steps
of the deblurring process. The figure shows that until the
1600th step, the non-interpretable noise states were main-
tained, which accounts for 80% of the total 2000 steps. And
significant generation process which can be visually per-
ceived occurred only at the last 400 steps, which only ac-
counts for 20% of the total 2000 steps. In every process
of performing diffusion-based image deblurring, the same
generation pattern as the above result was confirmed and
this pattern was even agnostic to the image size.

At first glance, the meaningful generation process seems
to only occur for the last 400 time steps. Therefore, it can
be considered that an excessively large number of time steps
was set for the training of the diffusion model. Since remov-
ing unnecessary time steps means the faster inference time
of the diffusion model. To test the effect of the time step and
the role of the non-interpretable noise states, the diffusion
model was trained with the number of time steps of 1000
and 400 respectively. In order to only consider the impact
of time steps, start and end values of the beta were also con-
trolled to match the values of beta during the last 400 time
steps.

See Fig. 4 for the deblurred result from the model trained
with different time steps respectively. The input blurry im-
age was the (a) of figure Fig. 2. The figure shows that the re-
sult from the model trained with 1000 steps could not match
the overall tone of the original input image. By using the
SDE framework [22], the inference process of the trained
model can be more carefully controlled to match the over-
all tone of the input image, but it was still impossible to
visually match the overall tone of the input image. When
the model was trained with 400 steps only, it not only could
not match the overall tone of the input image and but also
could not perform image deblurring properly. Although
most of the steps were meaningless noise visually, proper
deblurred results could not be obtained when attempting to
train the model by shortening the number of time steps. It
suggests that most of the iterative steps that appear to be
non-interpretable simple noise states are essential prepara-

tions to match the overall image tone and active generation
in the late stage of the deblurring process.

4.5. Additional Approaches

In an attempt to further interpretation of the above men-
tioned intermediate noise states, we introduced the atten-
tion layers inside the U-net architecture with 2 different ap-
proaches: Using a self-attention layer only to sufficiently
downsampled feature resolution and using a linearized self-
attention layer. However, the usage of these two approaches
dropped the overall deblurring performance of the diffu-
sion models. It seems that the number of parameters of
the model was insufficient to utilize self-attention layers.
But due to the limitation of computational resources, ex-
periments in larger models could not proceed. Thus, this
approach for interpretation of the noise state of conditional
generation needs to be addressed in future work.

5. Conclusions
The generative diffusion process is in the big spotlight

nowadays and is likely to be applied in various image
restoration tasks. In this work, we investigated whether the
generative diffusion framework without any task-specific
design is suitable for image deblurring as well as for other
image restoration tasks. To this end, we trained the diffu-
sion model to perform the image deblurring task and tried
to compare its performance to the existing models in a more
general deblurring setting where the train-test resolution
discrepancy exists. In the resolution discrepancy situation,
the conditional diffusion model could output the most rel-
atively deblurred results while the existing models cannot
perform the image deblurring properly, merely reconstruct-
ing the blurry input images. It has been understood that
the generating process of the diffusion model occurs evenly
and gradually during iterative time steps with the figures
presented in several existing papers. However, by visually
observing the iterative steps of the diffusion-based deblur-
ring process, it was confirmed that the significant visually
perceivable generation process occurred only at the last 400
steps out of the total 2000 steps. Although most of the steps
were non-interpretable noise states, the further experiment
confirmed that these steps were essential preparations to
match the overall image tone and active generation in the
late stage of the deblurring process.
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Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021. 4

[13] Bahjat Kawar, Gregory Vaksman, and Michael Elad.
Stochastic image denoising by sampling from the posterior
distribution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops, pages
1866–1875, October 2021. 3, 4

[14] D. Kouame and M. Ploquin. Super-resolution in medical
imaging : An illustrative approach through ultrasound. In

2009 IEEE International Symposium on Biomedical Imag-
ing: From Nano to Macro, pages 249–252, 2009. 1

[15] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind motion
deblurring using conditional adversarial networks, 2018. 1

[16] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang
Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)
faster and better. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8878–8887,
2019. 1, 2, 4

[17] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 1, 5

[18] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping
Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and
Haifeng Shen. Single image super-resolution via a holistic
attention network, 2020. 5

[19] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-
imans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. arXiv preprint
arXiv:2104.07636, 2021. 2, 3, 4, 5

[20] Qi Shan, Jiaya Jia, and Aseem Agarwala. High-quality mo-
tion deblurring from a single image. Acm transactions on
graphics (tog), 27(3):1–10, 2008. 2

[21] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution, 2020. 3

[22] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, 2021. 3, 4, 5, 8

[23] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé
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