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Abstract

Self-supervised learning (SSL) methods achieve compa-
rable performance with supervised learning methods. How-
ever, the distribution of embedding space in SSL is not sep-
arable clearly. To address this issue, this paper proposes
a novel loss function, called Distance Enhancement (DE)
loss, to enlarge the distance between the embedding space
of different classes. A new metric is also proposed, which is
Negative Log Absolute Determinant(NLAD) metric, to eval-
uate the quality of embedding space.

Experimental results show that the proposed DE loss
can significantly improve the quality of embedding space
for both SSL and supervised learning methods. It re-
duces 90.4% and 20.9% NLAD for ResNet-50 on the
CIFAR-10 dataset with the SimCLR and supervised cross
entropy learning paradigms, respectively. The code is
available at https://github.com/hojunroks/
EmbeddingAnalysis.

1. Introduction
Convolutional neural networks (CNNs) [14, 16, 22, 23]

have achieved great success in the computer vision research
community. With the sophisticated architectures, the per-
formance in classification tasks [7] is significantly improved
via supervised learning on large-scale datasets. However,
supervised learning relies heavily on time-consuming and
expensive data annotations. To address this issue, many
self-supervised methods have been proposed to learn visual
features from large-scale unlabeled images without human
annotations.

Traditional self-supervised methods [2,8,9,11,17,19–21,
31, 32] learn representative features by accomplishing pre-
text tasks. Clustering-based methods [1, 3, 4, 26, 28, 29, 34]
learn with unlabeled data in an end-to-end manner. The
samples are clustered into n clusters, and each one is
mapped with a corresponding class to evaluate the accuracy
performance. Recently, contrastive methods [5, 6, 12, 13,
18, 24, 27, 30] achieve state-of-the-art performance in self-
supervised learning. They aim at embedding augmented
views of the same sample close to each other while push-

ing away embeddings from different samples in the latent
space.

Although the performance of self-supervised methods is
rapidly approaching the supervised learning methods, the
distribution of the class-specific embedding space in self-
supervised methods is not as well discriminative as super-
vised methods. As shown in Fig 2, the distance between
the embedding space of two different classes is short in
self-supervised methods, which means the visual represen-
tations from different classes are not separated well and may
degrade the performance in downstream tasks, such as clas-
sification tasks. Intuitively, the samples from the same class
should have high cosine similarity while low for different
classes.

Based on that, this paper proposes a novel loss function,
called Distance Enhancement loss, which helps SSL meth-
ods generate more separable embedding space. To evalu-
ate the quality of the embedding space, a new metric, called
Negative Log Absolute Determinant (NLAD) metric, is pro-
posed based on the cosine similarity matrix. Experimental
results show that the proposed method can help CNNs learn
better visual representations in both self-supervised and su-
pervised learning methods.

The contributions of this paper can be summarized as
follows:

• We show that neither supervised and self-supervised
methods are fully leveraging the embedding space and
propose a novel problem.

• We propose Distance enhancement loss and show that
CNNs can leverage a wider embedding space by ap-
plying it during the training.

• We propose a Negative Log Absolute Determinant
(NLAD) metric to evaluate the quality of the embed-
ding space generated by CNNs.

The rest of this paper is organized as follows. Section 2
briefly reviews self-supervised learning methods and unsu-
pervised learning methods in classification tasks. The pro-
posed loss function is presented in Section 3. Section 4
shows the experimental results of the proposed work while
Section 5 summarizes our findings.
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2. Related works
2.1. Self-Supervised Learning

Unsupervised visual representation learning, or self-
supervised learning, aims at learning effective visual rep-
resentations without data annotations. NPID [27] learns
instance-level representations via a non-parametric softmax
classifier and uses a memory bank to store them. MoCo [13]
builds dynamic dictionaries with a queue and a moving-
averaged encoder, which enables a large and consistent dic-
tionary for learning visual representations. SimCLR [5] re-
quires neither specialized architectures nor a memory bank
and performs well through a composition of multiple data
augmentation operations, a learnable nonlinear transforma-
tion, and large batch sizes. BYOL [12] learns representa-
tions without using negative pairs by iteratively bootstrap-
ping the outputs of a network to serve as targets. The ap-
proach is more resilient to changes in the batch size and the
set of image augmentations compared to SimCLR. Barlow
Twins [30] learns representations through a joint embedding
of distorted images and the proposed objective function nat-
urally avoids collapse by measuring the cross-correlation
matrix. The method does not require large batch sizes or
any asymmetric mechanisms. SimSiam [6] avoids collaps-
ing and can perform competitively without negative sample
pairs, large batch sizes, and momentum encoders.

2.2. Unsupervised Learning

DeepCluster [3] jointly learns the parameters of a neu-
ral network and predicts the cluster assignments as pseudo-
labels to update the weights. Compared to DeepCluster,
SeLa [1] adds the constraint that the number of samples
should be equal across clusters to avoid ill posed learn-
ing problems with degenerate solutions. SCAN [26] is a
two-step framework that firstly learns feature representa-
tions through a pretext task and then clusters the semanti-
cally meaningful nearest neighbors as a prior into a learn-
able approach. NCD [33] adopts an end-to-end clustering
technique via the use of pairwise similarity of samples and
directly explore neighborhood by k-nearest neighbors.

3. Method
In this section, we introduce the existing self-supervised

methods and formulate the problems through their limita-
tions. We then describe our Distance Enhancement loss in
detail.

3.1. Problem Formulation

Representation learning with SSL methods. Recent stud-
ies in self-supervised methods [5, 6, 12, 13, 18, 24, 27, 30]
from representation learning aim to learn invariant repre-
sentations for distorted images. More specifically, they pro-

Figure 1. Left: The embedding space is not fully utilized. It cannot
be seen as a good presentation because it has ambiguous bound-
aries. Right: The two clusters are clearly divided. The inputs are
well embedded and make good use of the given space.

duce two distorted views for all images of a batch X sam-
pled from a dataset. The distorted views are obtatined via a
distribution of data augmentations. The two batches of dis-
torted views are then fed to a deep network with trainable
parameters, producing batches of embeddings. The training
uses contrastive loss as objective function, an example of
which is given in Eq.1,

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
, (1)

where z denotes output of model, 1[k ̸=i] ∈ 0, 1 is an indi-
cator function evaluating to 1 iff k ̸= i, τ denotes a temper-
ature, and N is the number of original image. In short, the
denominator makes the distance between distorted views
from the same data close, and the numerator makes the dis-
tance between distorted views from other data far, and the
used distance metric is cosine similarity.

Limitations. If the model is trained well as designed by
contrastive loss, the same class has a high cosine similarity
value and different classes have low cosine similarity, so
a large portion of the embedding space is used. However,
as can be seen from Fig 2, which is the cosine similarities
between the mean representation vector of each class, we
can observe that the angle between the mean representation
vectors of each class is not large enough.

We confirmed that this phenomenon also appears in su-
pervised learning trained with cross entropy loss (see Fig
2 and Tab 2). The low distances between class clusters is
means that they are not using the embedding space effi-
ciently. If we use a wider embedding space, we can ob-
tain better representations and better results for downstream
tasks such as classification. To the best of our knowledge,
there have been no studies to evaluate and tackle this prob-
lem.
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(a) SimCLR (b) MoCo v2 (c) SwAV

(d) Self-supervised (ours) (e) Supervised (CE) (f) Supervised (Ours)

Figure 2. Cosine similarity matrix between mean representations The matrix is visualized with color so that it could be easily recog-
nized. Each block is brighter with a higher value and darker with a lower value. We can see that when our method is used, the cosine
similarity between mean presentations definitely decreases. CE denotes cross-entropy loss.

3.2. Evaluation of Representations

One main focus of representation learning is not just to
obtain clear representations, but also using the representa-
tions to apply it to downstream tasks such as object classifi-
cation and detection. It is common that the representations
themselves are fine-tuned in the process of training for these
downstream tasks.

However, although the performance of downstream tasks
is closely correlated with the quality of the representations,
it is affected by many other factors, such as the training al-
gorithm itself. Since our main purpose is how to create se-
mantically reasonable representations in a larger represen-
tation space, we evaluate the representations without any
further training.

First, we apply t-distributed stochastic neighbor embed-
ding (t-SNE) [25] to reduce the dimensions of the represen-
tations. Since t-SNE itself clusters similar representations,

we can assume that better representations will be clustered
easily without any further operations.

Instead of evaluating on all of the samples, we define
a confidence metric and evaluate on the confident samples
C. This is an attempt to focus more on the representative
power of the model on finding the clear samples near the
cluster center, and not the ambiguous samples near the bor-
der. Since t-SNE embeds near-border samples closer to the
center, the confidence scores are based on the distance of
the embedding from the center.

For assignment of the labels to the clusters, any clus-
tering method such as k-means clustering or agglomerative
clustering can be used. We apply agglomerative clustering
method to assign the labels. Then, the accuracy of the labels
is evaluated using the hungarian assignment algorithm. The
overall evaluation metric is shown in Algorithm 1.
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Algorithm 1 Evaluation of Respresentation Pseudocode

# X: input (NxD)
# GT: ground truth (N)
# TSNE: t-SNE function
# F: encoder function
# k: the number of samples
# argpartition: function returning descending indices
# C: Clustering function

## sampling confident feature

# t-SNE feature: (N, 2)
zs = TSNE(F(X))

# calculate the confidence of features: (N, 1)
conf = sqrt(sum(zs.pow(2), dim=-1))

# indices of top k confident feature
indices = argpartition(conf)[:k]

# sampling k most confidence samples: (K, D)
sample, sample_gt = X[indices], GT[indices]

## Calculating clustering accuracy

acc = (C(F(sample)) == sample_gt) / k

3.3. Distance enhancement loss for negative pairs

As shown in Eq.1, the denominator of the contrastive
loss sums the exponential values of the cosine similarity of
the negative pairs so that they move away from each other.
The loss was designed this way knowing that ensuring the
proximity of positive pairs is a more important objective
than keeping the negative pairs apart. The ensuing problem
is that only a small portion of the embedding space is used.
Therefore, we propose adding Distance enhancement loss,
which forces the negative pairs apart from each other so that
a wider portion of embedding space is used. The Distance
enhancement loss is as follows:

D =
1

(N − 1)2

B∑
i=1

B∑
j=1

1[j ̸=i]sim(zi, zj), (2)

where B is batch size. Adding Distance enhancement loss
to the contrastive loss, balancing the two objectives by λ,
we reach our novel loss function:

L =
1

2B

2B∑
i=1

− log
exp(sim(zi, zj)/τ)∑2B

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
+λD.

(3)
We confirm that adding a simple Distance enhancement loss
the mean representations of the classes are strongly sepa-
rated as shown in Fig 2.

Applying to supervised method. We can also add Dis-
tance enhancement loss to the cross entropy loss commonly
use in supervised methods. Knowing the label, we use the
mean representation vector mi of each class in the batch,
redefining the Enhancement loss as follows:

D =
1

(C − 1)2

C∑
i=1

C∑
j=1

1[j ̸=i]sim(mi,mj), (4)

where C denotes the number of class. And the final loss
for supervised learning with Distance enhancement loss is
as follows:

L =
1

B

B∑
i=1

CE(yi, pi) + λD, (5)

where CE denotes cross entropy loss, y denotes a label, and
p is a prediction of the model.

3.4. Negative Log Absolute Determinant

We obtain a cosine similarity matrix by computing the
distances between the mean representations of all members
for each class. We propose Negative Log Absolute Deter-
minant (NLAD) to measure how well the model learned to
use the embedding space. NLAD is defined as follows:

NLAD = − log |Det(M)|, (6)

where M is cosine similarity matrix and Det(·) denotes de-
terminant. If the mean representations are orthogonal to
others except themselves, NLAD becomes 0. If they all
have the same direction, it becomes infinity. Therefore, the
smaller the NLAD value, the larger the embedding space is
used. Mean representation did not exceed the right angle
with each other, so such cases are excluded.

In Tab 2, we compared several methods by calculating
NLAD.

4. Experiments
4.1. Experimental setup

Dataset. The experimental evaluation is performed on CI-
FAR10 [15]. We only proceeded with small dataset due
to training time problems, but we encourage future exper-
iments with large datasets.

Training setup. We use a ResNet-50 backbone. We
adopt the training procedure from SimCLR [5], including
its key strength, the data augmentation strategy, as well as
the learning rate scheduling method and other training de-
tails. The hyperparameter λ multiplied to scale Distance

Table 1. Classification Accuracy Ablation Study In order to
evaluate whether Distance Enhancement loss makes a better rep-
resentation, the ablation study is conducted using a supervision
method. As can be seen from the table, when our loss is added, it
showed 1.01% better accuracy. CE denotes cross-entropy loss.

Method Classification accuracy
Supervised (CE) 95.57%

Supervised (CE + ours) 96.58%
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(a) SimCLR (b) MoCo v2 (c) SwAV

(d) Self-Supervised (Ours) (e) Supervised (CE) (f) Supervised (CE+Ours)

Figure 3. CIFAR-10 t-SNE visualization in embedding space.

Enhancement loss is set to 0.1 in self-supervised learning
and 1 in supervised learning.

For a fair comparison under our GPU, all the mod-
els compared by us use the implementation from Pytorch
Lighting Bolts [10]. Since SimCLR [5], MoCo v2 [13], and
SwAV [4] did not perform CIFAR10 training in the papers,
we do hyperparameter tuning to achieve the good results.

4.2. Cosine similarity matrix analysis

We compared the cosine similarity between the mean
representation vectors obtained from various pretrained

Table 2. Negative Log Absolute Determinant (NLAD) Compar-
ison We used our proposed NLAD as a quantitative metric com-
paring the area of the embedding space. The lower the NLAD,
the wider the model uses the embedding space. CE denotes cross-
entropy loss.

Metric NLAD

Train Dataset ImageNet CIFAR10
Untrained 80.68 80.68
SimCLR 21.25 16.90
MoCo v2 24.84 22.92
SwAV 18.58 36.36
Ours - 1.62
Supervised (CE) 26.38 12.46
Supervised (CE + ours) - 9.86

self-supervised models(SimCLR, MoCo v2, SwAV) as
shown in figure 2. The matrix shows that all the classes
show similar representations. We can see in Fig 2d that the
added Distance enhancement loss was successful at separat-
ing the mean representations from each other.

This not only enhances the representative power of the
model by using a larger latent space, but shows that the rep-
resentation themselves are much better when we analyze the
quantities of the similarities between classes. Since repre-
sentation vectors are semantic embeddings of an image, we
expect similar samples to have similar representation vec-
tors.

This may seem obvious inside the class, but should also
hold true between classes. By common knowledge we know
that cats are similar to dogs, and trucks and horses are very
different. Before applying the Distance enhancement loss,
it is hard to say the representation vectors have successfully
captured semantic characteristics since every vector is sim-
ilar to another.

But as shown in Fig 2d, the similarity values coincide
with common human knowledge. Given that the training
was done self-supervised without any labels, the Distance
enhancement loss helped capturing the semantic similarities
and differences between each class correctly.

As trained with a label, it can be confirmed that the dis-
tance between mean presentation vectors has been learned
farther than self-supervised methods. Cross-entropy loss
does not explicitly separate negative pairs, but naturally
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pushes out each mean presentation vector to perform classi-
fication well. However, since it still shows distances that are
not far enough, we trained the model using the supervised
version of the distance enhancement loss. Given a large λ
during training, the distance between the mean representa-
tion vector increases, but the model does not train well. So
we train the model with small λ. As can be seen in Figure
2f, the mean presentation vectors of the model trained in our
method utilize a larger space than before.

We also compared the cosine similarity between the
mean representation vectors obtained from supervised
learning model.

4.3. t-SNE visualization of embedding vectors

We performed t-SNE visualization on the embedding
vectors pretrained with various self-supervised learning
methods(MoCo V2, SwAV, SimCLR). Following the fre-
quent convention of self-supervised learning, we used a
model with ResNet50 as the backbone and pretrained on
ImageNet and targeting to evaluate on smaller datasets.
We’ve also evaluated a model that was pretrained on Im-
ageNet using regular cross-entropy loss with supervised
learning as baseline. The embedding vectors were taken
from the final convolution layer, with CIFAR-10 test images
given as input.

As transfer learning using self-supervised learning meth-
ods on bigger datasets have shown promising results on im-
age classification, we expected that the embedding vectors
would be clustered to a moderate extent for each class even
before fine-tuning using labels. However, as shown in Fig-
ure 4 , the results show that the embedding vectors were not
so nicely clustered. For some classes, the results do show
some clustering, but for many the vectors were spread out
and mixed up with each other.

We performed an additional experiment using a model
that was pretrained with self-supervised learning using
CIFAR-10 train images, as we expected that the low perfor-
mance of clustering was due to the difference between our
training and evaluating datasets. The difference between
the distribution of the images, and the size of the images
may have prevented the model from learning wanted fea-
tures of the evaluation dataset. As we can see in Figure 3,
the input images are somewhat clustered, although no labels
were used during training.

However, we can still see that most of the samples are
mixed together, hard to distinguish clusters from one an-
other. This means that the representations are similarly
mapped to the latent space. When we applied Distance En-
hancement loss with confidence, we could easily see that
the clusters were clearly separated from each other.

This indicates that the Distance Enhancement loss was
successful at clustering representation vectors by separating
them apart from each other. The ground truth labels at (d)

Table 3. Evaluation of Representations Comparison of the clas-
sification accuracy calculated according to algorithm 1.

Method Classification accuracy
Self-Supervised (SimCLR) 0.56

Self-Supervised (Ours) 0.84

show the clear border between the samples.
However, as shown in (d), we can see that many blue la-

bels(cats) were excluded by the confidence-based filtering.
This means that the model has difficulties in distinguish-
ing classes that are similar to many other classes. Since
the main effect of the Distance Enhancement loss is to map
images to a larger latent space by separating distinct rep-
resentation vectors, the model may lack the ability to cre-
ate a robust gap between similar classes, and thus be much
less confident in clustering similar classes. But for distinct
classes, our method shows clear separation between classes
that are less confusing.

As an additional experiment, we perform t-SNE visual-
ization of the model learned by supervised learning using
cross-entropy loss. Fig 4d shows that the model learned
through cross-entropy has good embedding clusters, but the
distance between clusters is close and has quite a lot of over-
lapping.

To improve the problems, we train the model with the su-
pervised version of Distance Enhancement loss mentioned
in Section 3.3 and perform t-SNE visualization (3f). Con-
trary to expectations, the t-SNE result is not good, but the
distance between clusters becomes far and the variance of
some clusters has become very small. And most of all, the
classification accuracy is improved as shown in Tab 1.

4.4. Quantitative evaluation of representations

Table 3 shows the result of quantitative evaluation per-
formed on our model following the evaluation process of al-
gorithm 1. Even without any further training, just by assign-
ing labels using agglomerative clustering, we could gain
a classification accuracy of 0.84. Although the accuracy
was calculated using only confident samples, the results are
interesting as they were achieved with a single end-to-end
self-supervised training process.

5. Conclusion
We have shown how previous representations do not

fully use the possible embedding space, and introduced the
NLAD metric to evaluate embedding spaces. Our key con-
tribution is the novel Distance enhancement loss, which
makes the model use a wide embedding space. This im-
proves the NLAD, produces a better clustered t-SNE projec-
tion and increases classification accuracy compared to the
original cross-entropy loss. We therefore see Distance en-
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(a) SimCLR (b) MoCo v2

(c) SwAV (d) Supervised (CE)

Figure 4. CIFAR-10 t-SNE in the model trained with ImageNet.

hancement loss a promising tool for contrastive learning in
general and for self-supervised image representation learn-
ing specifically.
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