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Abstract

Recent advances in 3D scene reconstruction have ad-
dressed various challenges posed by transparent objects,
which are commonly encountered in everyday life but
present difficulties in image detection, segmentation, and
3D rendering due to their property of allowing light to pass
through them. While innovative algorithms like 3D Gaus-
sian Splatting (GS) have overcome several issues associated
with Neural Radiance Fields (NeRF), accurately rendering
transparent objects remained challenging. Some of our ex-
periments confirmed that thermal infrared (TIR) images are
more effective than RGB images in accurately recognizing
the shapes of transparent objects in images. Based on this,
we successfully developed an RGB-to-TIR module using a
Stable Diffusion (SD) based model to convert RGB images
into TIR images. Although we could not directly apply the
diffusion module to 3D rendering due to pose-inconsistency
issues in the dataset used for fine-tuning the diffusion mod-
ule, we achieved higher accuracy in the 3D depth map when
using a GAN-based sRGB-to-TIR model to convert RGB
images into TIR images. This suggests that significant im-
provements in depth map accuracy can be achieved by im-
proving the camera angle alignment in the RGB-TIR paired
dataset used for diffusion fine-tuning.

1. Introduction

In recent years, the field of 3D scene reconstruction, typ-
ically performed with Neural Radiance Fields (NeRF) [28],
has seen rapid advancements with the emergence of Gaus-
sian Splatting (GS) [20]. Subsequent NeRF-based models
have been capable of accurately generating complex scenes,
but struggled with the drawback of being computationally
costly in terms of generation speed [5,9,38]. GS distributes
Gaussian kernels with color and transparency in 3D space,
projecting them to create images. This method, both fast
and flexible, addresses the shortcomings of traditional 3D
rendering techniques [11,20,41].

Figure 1. 3D GS with RGB inputs shows poor performance in 3D
reconstruction for transparent objects.

However, 3D GS alone cannot accurately generate ev-
erything in the real world. Transparent objects, such as
glass and plastics, are commonly encountered in everyday
life, but 3D renderings fail to calculate the complex inter-
actions between light and transparent surfaces due to their
unique optical properties that allow light to pass through.
Through experiments, we found that rendering transparent
objects using multi-angle RGB images resulted in inaccu-
rate volumes due to the scene beyond the transparent object
being calculated as part of the object, or the edges of the
transparent object not being captured accurately [43]. The
experimental results are in Figure 1, and for the aforemen-
tioned reasons, the transparent objects appear as inaccurate



shapes in the depth map.

There have been various approaches to accurately rec-
ognize transparent objects in images [&, 10, 25,26, 30, 42].
Among these, converting RGB images to TIR images has
proven effective in robustly recognizing the volume and
shape (edges) of objects. Although previous studies training
Generative Adversarial Networks (GANs) [13] using con-
trastive learning for TIR image transformation, the training
was unstable, requiring additional conditions to get reason-
able results [23]. We defined this task as a style transfer
problem and aimed to apply diffusion, which has recently
surpassed GANs in performance in the image editing field,
to this problem. We fine-tuned InstructPix2Pix [3] based on
the Stable Diffusion (SD) [32], a diffusion model known for
its stable training. While we successfully achieved RGB-
to-TIR conversion in 2D, we failed to apply it to 3D ren-
dering due to camera pose inconsistency issues in the train-
ing dataset. However, by confirming an improvement in
the accuracy of the depth map when performing 3D render-
ing after TIR imaging using the GAN-based sSRGB-to-TIR
model [23], we verified the potential of improving the cam-
era pose alignment in our diffusion module’s fine-tuning
dataset.

In this paper, we propose a novel approach using a
diffusion-based module to enhance rendering of transparent
objects by converting RGB images to TIR images. Through
various experiments and evaluations, we demonstrate the
success of our RGB-to-TIR diffusion module in 2D TIR
imaging. We show that improvements to this module can
overcome limitations of existing methods and enable more
realistic rendering of transparent objects in 3D scenes.

The key contributions of our research can be summarized
as follows:

1. We propose a method using an SD-based style transfer
model to convert RGB images to TIR images.

2. We introduce a framework that augments the 3D GS
pipeline, originally rendering sampled RGB images,
with an RGB-to-TIR translation process. This frame-
work enables accurate 3D rendering of transparent ob-
jects even from conventional RGB images captured
with ordinary cameras.

3. Testing 3D rendering using TIR imaging via GAN-
based models demonstrates the potential of our diffu-
sion module’s scalability.

2. Related Works

Detecting Transparent Objects. Numerous studies
have been conducted on segmenting transparent objects
such as mirrors or glass and reconstructing them in 3D
from 2D images. Initially, various attempts were made to
calculate depth or other parameters for glass segmentation
in images [8, 16,25,26,30,42]. However, due to light re-
flection, even RGB-D data collected through depth cameras

proved challenging to utilize for recognizing the surfaces of
transparent objects. Transparent objects are amorphous in
structure, lacking clear boundaries, making them difficult to
identify using visible light. In contrast, when utilizing TIR
(Thermal Infrared) imaging, these objects appear opaque
in the long-wave infrared range, making it easier to distin-
guish them from the background. Consequently, the shapes
of transparent objects can be accurately calculated [ 14, 16].
Based on this characteristic of TIR images, this paper aims
to introduce methods for more accurately converting RGB
images into TIR images.

In 3D reconstruction research, Dex-NeRF [17] leveraged
additional light to improve NeRF learning by calculating
whether the light is reflected, while SAID-NeRF [37] cal-
culated the depth of hierarchically transparent objects using
a mask generated by the Segment Anything Model (SAM)
[22]. However, both of these methods are time-consuming,
especially Dex-NeRF, which requires starting from data col-
lection, leading to limited practical utility.

This paper aims to propose a general method for directly
utilizing existing RGB datasets of transparent objects [0, 17,
] for 3D reconstruction.

RGB-to-TIR Style Transfer. Previous GAN-based
RGB-to-TIR image translation studies have effectively ad-
dressed the challenge of translating between two different
domains. By leveraging the strengths of Bi-domain-based
transformations, these methods have shown significant im-
provements in capturing the essential features of both RGB
and TIR images. They demonstrate a strong ability to gen-
eralize across various scenarios and have successfully pre-
served the intricate details of the original RGB images, en-
suring high-quality and accurate translations [23]. Build-
ing upon these works, employing a different base model
could also lead to performance enhancements specifically
in translating transparent objects RGB-to-TIR. Given that
recent diffusion models have surpassed GANs in editing
capabilities [10, 19, 40] and are being utilized in various
tasks [3, 27, 33,44], including style transfer, we anticipate
that using a diffusion model could better address the RGB-
to-TIR translation problem.

Diffusion [35] is a method for generating images us-
ing a diffusion process, which has garnered attention re-
cently for surpassing the performance of GANs [13]. This
model gradually alters pixel values to generate desired out-
puts. Specifically, SD [32] is known for executing this pro-
cess reliably, minimizing issues like mode collapse during
training and achieving high-quality image generation. In-
structPix2Pix [3] is an image editing model based on SD
that modifies or transforms images based on textual instruc-
tions. In this study, we chose this model to RGB-to-TIR
style transfer, converting RGB images into TIR images. We
also compared the results from GAN-based models, specif-
ically CycleGAN [48] and sRGB-TIR [23], as baselines.
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Figure 2. An overview of TIR-based 3D GS pipeline. Input RGB images of transparent objects are translated into TIR images through our
RGB-to-TIR diffusion model (used sSRGB-TIR model instead of diffusion). Then, 3D GS renders transparent objects with COLMAP SFM
points from TIR images. We estimated depth maps by depth rasterization.

3D Representations. In 3D representations, methods
utilizing neural radiance have been predominant. NeRF en-
ables 3D rendering from 2D images using volumetric ren-
dering based on position and direction. However, NeRF
optimization is time-consuming, leading to practical limi-
tations. Research efforts have focused on improving com-
putational speed [5, 29, 38] or reducing input requirements
[5,9,45]. The recent emergence of GS has significantly
improved the speed and accuracy of traditional NeRF. GS
has produced high-quality results in 3D reconstruction tasks
within minutes, garnering significant interest in the genera-
tion field [1 1, 20].

Our research aims to extend the application of 3D GS to
transparent object reconstruction, thus expanding existing
3D rendering techniques, which were previously limited to
opaque objects, to encompass all real-world objects.

3. Method
3.1. Background

RGB-to-TIR Image Translation. Early approaches to
RGB-to-TIR image translation heavily relied on image reg-
istration and fusion techniques. These methods typically
involved aligning RGB and TIR images through geomet-
ric transformations and then merging the information from
both modalities to create a composite image. Techniques
such as wavelet transform [4], principal component analysis
(PCA) [1], and gradient-based methods were used, but they
often struggled with issues related to alignment accuracy
and information loss. Additionally, handcrafted feature-
based approaches like Scale-Invariant Feature Transform
(SIFT) [24] and Speeded Up Robust Features (SURF) [2]
were used to extract and match features between RGB and
TIR images. However, these techniques were limited by the
quality of the extracted features and the need for manual
tuning.

The advent of CNNs brought innovation to the field of
image translation. Early CNN-based models focused on
learning the complex mappings between RGB and TIR im-
ages, demonstrating significant improvements in transla-
tion accuracy and robustness compared to traditional meth-
ods. GANSs have played a particularly important role in
this field, with the Pix2Pix [18] framework being widely

adopted for RGB-to-TIR translation. CycleGAN addressed
the challenge of scarce paired training data by using cy-
cle consistency loss, allowing training on unpaired datasets.
More recently, attention mechanisms have been integrated
into CNN and GAN frameworks to further enhance trans-
lation quality. Attention modules help the network focus
on salient regions of the image, improving the accuracy and
detail of the translated images. These advancements have
resulted in more accurate and visually appealing outcomes
in RGB-to-TIR translation.

Text-guided Diffusion Models. Text-guided diffusion
models [32] aim to map an arbitrary Gaussian noise vec-
tor z7 into an image zo while aligning with a specific text
condition c, typically text embeddings derived from text
encoders like CLIP [31]. This is achieved through a sequen-
tial denoising operation known as the reverse process. This
process is driven by a noise prediction network €y, which is
optimized through loss functions:

Limpte = By eano,1),0~0(1,1) 1€ — €0(22. t, c) 3. (1)

Here, ¢y is abbreviated as eyp(z¢, cy) by omitting the
timestep condition for brevity in network output nota-
tion. Text-guided diffusion models typically incorporate
text conditions during image generation using classifier-free
guidance (CFG) [15]. CFG is represented as:

€o(z¢, cr) = €9(2¢,0) + w - (e0(2¢, c1) — €0(21,0)). (2)

Here, w denotes the text guidance scale controlling the in-
fluence of the text condition, and () represents the null text
embedding.

SFM Points by COLMAP. According to [20], to per-
form 3D Gaussian Splatting, SFM (Structure-from-Motion)
points are required. SFM takes unordered images as input
and outputs camera poses and 3D mapping points through
correspondence search and incremental reconstruction [34].
In the correspondence search stage, the process begins with
extracting keypoints from unordered images, typically us-
ing algorithms like SIFT to identify SURF in the images.
Next, keypoints from multiple images are matched with
those from other images to form pairs of related images.
During this process, the RANSAC (Random Sample Con-
sensus) [12] algorithm is employed for geometric verifica-
tion, ensuring the selection of correct image pairs. These



matched image pairs then serve as crucial input data for
the subsequent reconstruction stage. In the incremental re-
construction stage, the 3D structure is progressively recon-
structed using a scene graph. In the initialization phase,
two images are selected to form a basic 3D structure. Sub-
sequently, the PnP (Perspective-n-Point) [12] algorithm es-
timates the pose of new images and integrates them into the
existing structure. Through this process, the poses and 3D
points for all images are gradually completed. Finally, the
Bundle Adjustment (BA) [36] technique optimizes the es-
timated points and poses. BA operates by simultaneously
adjusting all points and camera poses to minimize errors.

COLMAP is a prominent software that implements
these SFM techniques. Given unordered images as input,
COLMAP computes SFM points, camera intrinsic parame-
ters, and camera poses through correspondence search and
incremental reconstruction stages. Since our dataset only
consists of images without poses, we integrated COLMAP
into the pre-processing pipeline of 3D GS to directly esti-
mate poses.

3D Gaussian Splatting. The algorithm described in [20]
employs a 3D Gaussian-based model for real-time render-
ing. Utilizing 3D Gaussians to represent 3D scenes as point
clouds was chosen due to its differentiability and ease of 2D
projection, as highlighted in [20]. A 3D Gaussian is defined
by its center x and covariance matrix . within the context
of a point cloud:

Gz) = e 2@ '3 (@) 3)

The covariance matrix 3 can be decomposed into a scale
matrix S and a rotation matrix R:

Y =RSS'RT 4)

Here, S represents the scale of the 3D Gaussian, and R de-
notes the rotation. To render, it is necessary to project the
3D Gaussian into 2D. This process is achieved using the
viewing transformation matrix W and the Jacobian matrix
J approximating the affine projection. This yields the 2D
covariance matrix (denoted as Y').

Y =JwIw'J’ (3)

Here, J is the Jacobian matrix used for the 2D projection
of the 3D Gaussian, defined by a combination of viewing
transformation and projection transformation.

Utilizing this approach, Gaussian Splatting in [20] is
broadly divided into four stages: Gaussian initialization for
SFM points, 2D projection of 3D Gaussians, rendering us-
ing 2D Gaussians, and optimization. These processes can
be executed in real-time, enabling fast and efficient ren-
dering of high-resolution 3D scenes. Particularly, GS tech-
niques yield smoother results compared to traditional point
cloud rendering methods and operate efficiently even in
complex scenes.

Figure 3. TIR images are more helpful than RGB images for 3D
GS. These results show that our method is useful for accurate 3D
rendering of transparent objects.

3.2. Overview

Our proposed method aims to significantly enhance the
rendering of transparent objects within 3D environments. It
comprises two key components: the RGB-to-TIR diffusion
module and Depth Rasterization with 3D Gaussian Splat-
ting module. In the RGB-to-TIR diffusion module, training
utilizes two types of datasets: input RGB images and cor-
responding TIR images. To construct a dataset of transpar-
ent objects, we employ datasets as outlined in [21]. These
datasets contain RGB and TIR image pairs, alongside pose
and extrinsic data, which are leveraged in the 3D GS mod-
ule.

The foundation of our diffusion model is rooted in the
work presented in [32]. This work places a distinct em-
phasis on augmenting perceptual aspects, thereby yielding
a stable diffusion model. This model can be refined in var-
ious ways through the use of the refine module. To adapt
this model to our specific purpose, we employ an upgraded
version, denoted as [3]. This advanced model, an evolution
of the concepts introduced in [32], allows for training with
paired images and facilitates reference text-guided image
manipulation. Paired images, consisting of RGB and TIR
image pairs, are utilized in conjunction with this model to
seamlessly convert RGB images into TIR representations.

In the Depth Rasterization with 3D GS stage, TIR (Ther-
mal Infrared) images generated by our diffusion model
serve as inputs. This stage builds upon the principles out-
lined in [20], which introduces real-time, high-quality radi-
ance field rendering. With an adequate set of TIR images
generated across various poses, the SFM (Structure-from-
Motion) points are calculated, and the 3D GS algorithm cre-
ates depth maps of transparent objects. Because TIR images
are not in color, this paper focuses solely on the depth maps.
The output of the entire process is depicted in Figure 2.

3.3. RGB-to-TIR

In our study, we used the InstructPix2Pix model based
on Stable Diffusion to convert RGB images to TIR images.
InstructPix2Pix originally generates training datasets using
fine-tuned GPT-3 and Stable Diffusion. However, in our ex-
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Figure 4. TIR images translated from RGB inputs with several image style transfer models. Although it seems that Diffusion-based
InstructPix2Pix made a high quality TIR images, the shape of the objects are distorted. Among these, SRGB-TIR model performed well.

Method RMSE (|) MAE ({)

Testset  Test_1 Test_.11 Test.1 Test_11

3DGS 0.7038 0.4426 0.6129 0.3248
Ours 0.5321 0.3761 0.4227 0.2738

Table 1. Quantitative evaluation of depth map after 3D GS. Ours
showed improved performance compared to original 3D GS.

periments, we skipped the dataset generation phase because
we already had prepared RGB-TIR image pairs, and fine-
tuned the model using these prepared datasets.

InstructPix2Pix is a model that edits images based on
specific textual instructions. It takes an input image and a
text description to perform the desired transformation. For
instance, if the text description is ’change a specific part of
this image to blue,” the model identifies the specified part
in the input image and changes it to blue. This model has
a high degree of flexibility and can be applied to various
image editing tasks.

Stable Diffusion is a model that plays a crucial role in im-
age generation and transformation by progressively remov-
ing noise from a noisy image to produce a high-resolution
image. This process is highly precise, allowing for the re-
production of fine details with high quality. InstructPix2Pix
utilizes the principles of Stable Diffusion to transform spe-
cific parts of an image based on textual instructions.

In our experiment, the model was trained to take RGB
images as input and generate corresponding TIR images as
output. This process involves not just changing the style of
the image but also maintaining the form and detailed infor-
mation of objects while converting them into TIR images.

The dataset we used consisted of RGB-TIR image pairs
captured in various environments. This dataset included
various types of transparent objects, enabling the model
to generate accurate TIR images in different situations.

Method RMSE (]) MAE (})
Testset Test_.1 Test_.11 Test.1 Test_11
CycleGAN 0.5970 0.6675 0.4858 0.5733
InstructPix2Pix 0.5956 0.6420 0.4773 0.5438
sRGB-TIR 0.5321 0.3761 0.4227 0.2738

Table 2. Quantitative evaluation of translated TIR images. Fine-
tuned InstructPix2Pix achieved higher accuracy in TIR image
transformation compared to using the image editing model as is.

Through these image pairs, the model learned the charac-
teristics of both RGB and TIR images, allowing it to gener-
ate corresponding TIR images when new RGB images were
provided.

The training process of the InstructPix2Pix model was
as follows: first, the model was trained using RGB-TIR im-
age pairs as input. During this training, the following loss
function was used to accurately learn the transformation be-
tween RGB and TIR images:

L= ES(Z‘),S(C[),CT,ENN(O,l),t [”6 - 69(2,5, t, 5(01)’ CT) ||§

(6)
where € * 6 is the predicted noise, z; is the noisy image at
time ¢, E(cy) is the embedding of the input image ¢y, ¢ is
the textual instruction, and e is the noise drawn from a stan-
dard normal distribution. Through this loss function, the
model was able to precisely learn the process of transform-
ing RGB images to TIR images.

Once training was complete, the InstructPix2Pix model
could take a new RGB image as input and perform the task
of converting it into a TIR image. However, transformed
TIR image failed to reproduce the shapes and details of var-
ious objects, including transparent ones. So, we used the
same model with [23] for our RGB-to-TIR translation.



Method SSIM (1) PSNR (1) LPIPS ()
Testset  Test_.1  Test_11 Test_1 Test_.11  Test_1 Test_11
RGB 0.8371 09124 22.8956 26.1824 0.1209 0.1125

TIR 0.9307 0.9691

34.5199 31.4292 0.2865  0.222

Table 3. Quantitative evaluation of our method compared to previous works, computed over the TRansPose dataset.
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Figure 5. Depth map from depth rasterization with GS after translating TIR images with several image manipulation models.

3.4. Depth Rasterization with 3D GS

The overall process is illustrated in Figure 2. At this
stage, we use the TIR images transformed by the previous
diffusion module. First, we utilize COLMAP to compute
SFM points, camera poses, and camera intrinsics. Using
this information, we perform 3D Gaussian Splatting (GS),
optimize the Gaussian splats, and render the depth map.

COLMAP SFM Module. Using a diverse set of im-
ages {12}, I, € [0,1]7*W >3 we run COLMAP. Based
on [34], COLMAP provides the camera poses R; € R3*3
and t; € R3, and calculates the camera intrinsic parameters
K; € R3*3 and the SFM points P € R™*3. This informa-
tion plays a crucial role in rendering the depth map in 3D
GS.

Depth Map with 3D Gaussian. Using the SFM points
of the TIR images calculated by the COLMAP SFM Mod-
ule, we perform GS as proposed by [20]. Since TIR images
lack color information, we perform depth rasterization in
3D GS as suggested by [7] instead of color rendering. First,
initialize the SFM points calculated from the TIR images.
According to [7], the information obtained through GS is
used to render the depth map. Following the depth imple-
mentation method of NeRF, the equation is as follows:

D =>"d;oT;, (7)
iEN

Here, D denotes the rendered depth, and d represents the
depth of each splat emitted from each camera. a represents
the learned opacity multiplied by the covariance of the 2D

Gaussian. Using the formulation from [7], depth maps of
transparent objects can be rasterized using the proposed 3D
Gaussian splatting method. Based on [7], the rendering pro-
cess for transparent object depth maps can be outlined into
four main stages:

1. Initialization: Initialize Gaussian splats based on SFM
points with TIR images retrieved from 3.3. This in-
volves setting up splats in the form similar to Equation
3, incorporating positions and covariances of points.

2. Projection: Project 3D Gaussians onto 2D, computing
2D covariance matrices as described in Equation 5.

3. Differentiable Tile Rasterizer: Splat the projected 2D
Gaussian splats onto the image plane with the Equation
7.

4. Optimization: Optimize the rendered image. Adjust
Gaussian positions and covariances to generate a more
accurate depth map.

These four stages collectively enable the real-time render-
ing of depth maps for transparent objects using the 3D GS.

4. Experiment

In this section, we compared with the existing RGB im-
age based 3D reconstruction method to verify the rendering
performance of our model. Next, to verify the image trans-
lation performance of our RGB-to-TIR diffusion model, we
compared it with the existing model that converts RGB im-
ages into TIR images.

Experiments were conducted on two datasets for verifi-
cation. The first dataset is Transpose Datasets [2 1], and the
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Figure 6. Comparisons in depth map after 3D GS from RGB images and TIR images.

second dataset is Datasets for Dex-NeRF [17].
4.1. Training Details

Dataset. The Transpose Datasets is the first large-scale
multi-spectrum dataset that combines stereo RGB-D, TIR
images, and object poses to facilitate research on trans-
parent objects. The dataset includes 99 transparent ob-
jects, comprising 43 household items, 27 recyclable items,
29 chemical laboratory equivalents, and 12 non-transparent
objects. The dataset is organized into seq-test, seq-all,
seq-C, seq-H, and seq_T. For our experiments, we used the
seq-test_01 and seq-test_11 sequences. In each sequence,
RGB images were captured using the cam_L camera, while
TIR images were captured using the 8-bit cam_T camera.

Setup.

4.2. Depth Estimation

We compared MAE (Equation 8) and RMSE (Equation
9) to evaluate the performance of 3DGS and 3D GS with
our RGB-to-TIR translation module. Here, i € [0, ..., N]
denotes the frame number, r represents the pixel position,
and €2, is the set of all pixel positions across frames. D(r)
denotes the inferred depth in meters, while D(r) represents
the ground truth depth in meters.

1 .
MAE = — > Di(r) = Di(r)h, (8)
(i,r)EQ,
1 .
RMSE = |~ (r) — Di(r)||2
- > Di(r) = Di(r)]] ©)
(i,r)EQ,

In these equations, |w,| represents the cardinality of the
set wy, i.e., the total number of pixel positions considered.

Table 1 presents the RMSE and MAE computed for
the results obtained using the conventional 3D GS and our
model for the test 1 and test 11 sequences of the Transpose
Datasets. For RMSE, our model shows 0.1717 lower error
compared to the conventional 3D GS in the test 1 sequence
and 0.0665 lower error in the test 11 sequence. For MAE,

our model exhibits 0.1902 lower error in the test 1 sequence
and 0.051 lower error in the test 11 sequence compared to
the conventional 3D GS.

Figure 3 compares the depth maps obtained using the
conventional 3D GS and our model with the ground truth
(GT) for the testl and testl1 sequences of the Transpose
Datasets. The conventional 3D GS uses RGB input images
directly, whereas our model utilizes TIR-transformed im-
ages. As evident from the figure, the depth map results from
our model exhibit closer resemblance to the GT compared
to those obtained from the conventional 3D GS.

5. Ablations
5.1. RGB-to-TIR

First, we compared the transformation results of various
models that convert RGB images to TIR images to evaluate
the RGB2TIR image transformation module of our 3D GS
model. Table 2 presents the RMSE and MAE computed for
the results obtained using CycleGAN, InstructPix2Pix, and
sRGB-TIR to generate depth maps for the test 1 and test 11
sequences of the Transpose Datasets. We observed sRGB-
TIR achieved highest performance.

Through the results of TIR transformation in Figure
4, we compared the results of converting RGB images to
TIR images using CycleGAN, InstructPix2Pix, and sRGB-
TIR for the testl and test 11 sequences of the Transpose
Datasets. For CycleGAN, we observed lower quality and
significant disappearance of shapes of transparent objects.
In the case of InstructPix2Pix, while style transformation
to TIR images was effective, there were distortions in ob-
ject shapes and instances of object creation or disappear-
ance. Conversely, SRGB-TIR maintained object shapes in-
tact compared to InstructPix2Pix, despite less accurate style
transformation to TIR images. During this process, we
identified issues in the camera poses of the RGB-TIR pair
dataset used for finetuning InstructPix2Pix, which we ac-
knowledge as a limitation to be addressed in future work.

Figure 5 compares the results of depth rasterization using
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(b) Segmentation map of test 11 sequence

Figure 7. Segmenting transparent objects through existing seg-
mentation model fails.

GS after converting RGB images to TIR images using Cy-
cleGAN, InstructPix2Pix, and SRGB-TIR for the test]l and
testl1 sequences of the Transpose Datasets. CycleGAN and
InstructPix2Pix failed in 3D rendering due to shape distor-
tions during the RGB-to-TIR image conversion, leading to
inconsistency across frames. In contrast, SRGB-TIR suc-
cessfully maintains object shapes while transforming the
image style to TIR, enabling problem-free 3D rendering and
depth image generation for transparent objects.

5.2. 3D reconstruction

Table 3 presents the evaluation results of SSIM [39],
PSNR (Peak Signal-to-Noise Ratio), and LPIPS [46] for
3D reconstruction using RGB images and TIR images on
the test 1 and test 11 sequences of the Transpose Datasets.
Comparing the SSIM results, TIR images show 0.0936
higher SSIM for the test 1 sequence and 0.0567 higher
SSIM for the test 11 sequence compared to RGB images.
Comparing the PSNR results, TIR images exhibit 11.6243
higher PSNR for the test 1 sequence and 5.2468 higher
PSNR for the test 11 sequence compared to RGB images.
Lastly, LPIPS scores show that TIR images achieve 0.1656
higher for the test 1 sequence and 0.1095 higher for the test
11 sequence compared to RGB images.

Figure 6 compares the results of obtaining depth maps
using RGB images and TIR images for the test 1 and test
11 sequences of the Transpose Datasets. The depth ground-
truth of the Transpose Datasets is obtained by rendering ob-
ject parts using CAD models, hence depth information for
the background is not provided. We treated the depth for
the background as the maximum depth value.

In the test 1 and test 11 sequences, using RGB images

resulted in lower quality depth maps, whereas using TIR
images showed improved results compared to RGB images.
This indicates that RGB-to-TIR translation is effective for
3D rendering of transparent objects.

5.3. Segmentation

We also attempted to recognize transparent objects us-
ing segmentation instead of diffusion-based style transfer.
Figure 7 shows the results of segmenting RGB images from
test sequences 1 and 11 using a model pre-trained on the
ADE20K dataset [47]. Despite attempting to use the seg-
mentation maps for 3D GS, the objects were transparent,
causing the model to fail in distinguishing between back-
ground and objects, resulting in unsuccessful semantic seg-
mentation. Consequently, it demonstrated lower perfor-
mance compared to RGB-to-TIR style transfer.

6. Conclusion

Transparency of objects represents a significant chal-
lenge in computer graphics. We address the issue that the
3D GS model struggles to render transparent objects accu-
rately, aiming to resolve it by converting RGB images to
TIR images for precise depth map generation.

When training RGB-to-TIR style transfer using
diffusion-based InstructPix2Pix, it appeared effective in
transforming images into TIR format, yet maintaining the
shape of objects proved difficult, rendering it unsuitable for
3D GS. We concluded that using the sSRGB-TIR model, a
GAN-based approach to convert RGB images to TIR, im-
proved depth map performance compared to rendering with
RGB images alone and anticipate that improving camera
pose alignment in our diffusion module’s training dataset
will enable accurate rendering of transparent objects. This
points to future research directions and emphasizes the im-
portance of RGB-to-TIR image transformation technology
in achieving precise visual representation of transparent
objects in various graphics applications.

In summary, our research aims for accurate 3D depth es-
timation of transparent objects, demonstrating the crucial
role of RGB-to-TIR image translation techniques. Further-
more, future researches to develop better computer graph-
ics techniques capable of handling complex inter-reflections
and transparency of objects with greater accuracy.
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